Computer Vision (ZDO) - Motion analysis Introduction

Zdeněk Krňoul

Department of Cybernetics
FACULTY OF APPLIED SCIENCES
University of West Bohemia

Content:

- DIFFERENTIAL METHODS
 - OPTICAL FLOW
 - DETECTION OF FEATURE POINTS
 - FREQUENCY APPROACH

Computer vision motion analysis:

- Motion estimation from an image sequence (optical flow);
- Estimation of 3D properties of objects;
- Ego-motion estimation, ie estimation of 3D camera motion to a static scene.
- Necessary step for higher-level processing, which allows you to work with static and moving position of the observer and determine motion parameters, relative object in the image,

Background subtraction methods

- Methods are based on a static background and moving objects in the foreground.
- A moving object has a brightness (or color distribution) different from the background at t; this principle can be summarized in the following formula:

$$
F_{t}(s)= \begin{cases}1 & \text { for } d\left(I_{s, t}, B_{s}\right)>\tau \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Where $F_{t}(s)$ is the foreground at time t at the pixel position s;

- $d\left(I_{s, t}, B_{s}\right)$ indicates the distance between the current image I at time t at pixel position s and background B at pixel position s, τ is the threshold value;
- Background subtraction methods differ in the background model B and distance metric d.

Differential Image

We obtain a binary image d as:

$$
d(i, j)= \begin{cases}0 & \text { for }|f(i, j, t)-f(i, j, t+d t)|<e \tag{2}\\ 1 & \text { otherwise }\end{cases}
$$

What causes a value of 1 in the differential image:

- $f(i, j)$ was a background segment at time t and a moving object at time $t+d t$ (or vice versa)
- $f(i, j)$ was a segment of a moving object at t and is an segment of another moving object at $t+d t$
- $f(i, j)$ was at the time t and at time $t+d t$ an element of the same moving object, but in places with different brightness
- Incorrect detected points with a value of 1 will occur due to the presence of noise

Accumulation differential image: we get an intensity image $d_{\text {akum }}$

$$
\begin{equation*}
d_{\text {akum }}(i, j)=\sum_{t=1}^{T} a_{t} \cdot\left|f\left(i, j, t_{0}\right)-f(i, j, t)\right| \tag{3}
\end{equation*}
$$

- where $f\left(i, j, t_{0}\right)$ is a reference image
- $f(i, j, t)$ is a sequence of consecutive images
- a_{t} are weighting coefficients indicating the significance of the individual images of the sequence
note Reference image - an image of the processed scene that contains only stationary objects. If the movement in the scene is continuous, a reference image can be obtained by replacing the areas corresponding to the moving objects with the corresponding areas from other frames.

Adaptive Background Subtraction

- the method solves the problem of determining the reference image (often the background image without moving objects)
- in real conditions, there are related problems with the background as such - e.g. lighting (dimming), a small background change caused by a small movement of the camera (shaking), etc.
- there are several algorithms for adaptive background subtraction
Adaptive background mixture model (y.2001):
- each pixel of the background is a Gaussian mixture model ($K=3 . .5$)
- the weights of this mixture model the time with which the given brightness is in the scene;
- probable intensities in a given place are background - i.e. they are the longest in the scene and are, therefore, the most stable.

Optical Flow

- Analyzes the brightness properties of consecutive images of a given scene over time;
- Sparse optical flow: we analyze the motion of only selected points;
- Dense optical flow: each pixel of the image corresponds to a velocity vector.
Use of optical flow:
- Object Tracking
- Structure From Motion
- Video Compression
- Video Stabilization

Dense Optical Flow

- Dense optical flow is array $2 D$ vectors, where each vector shows the displacement of a pixel from a given frame to the next frame;
- is a two-dimensional vector because it determines the direction and magnitude of the velocity at a given position;

Conditions:

1. the intensity (color) of objects (pixels) does not change in the following image
2. adjacent pixels share a similar motion

Algorithm:

- suppose the intensity function $f(x, y)$ and the pixel intensity $I(x, y, t)$ in a given frame at time t
- the pixel intensity at position (x, y) shifts to the next frame by ($d x, d y$) for time $d t$
- suppose the intensity of this pixel is the same, then:

$$
\begin{equation*}
I(x, y, t)=I(x+d x, y+d y, t+d t) \tag{4}
\end{equation*}
$$

- then approximation by Taylor series we get the equation of optical flow:

$$
\begin{equation*}
f_{x} u+f_{y} v+f_{t}=0 \tag{5}
\end{equation*}
$$

where

$$
\begin{array}{ll}
f_{x}=\frac{\partial f}{\partial x} & ; \quad f_{y}=\frac{\partial f}{\partial y} \tag{6}\\
u=\frac{d x}{d t} \quad ; \quad v=\frac{d y}{d t}
\end{array}
$$

- f_{t} is the gradient in time and u, v there are unknown values
- The problem is that we have two unknowns and only one equation
- a solutions is the assumption of a common movement of adjacent pixels;
- The Lukas-Kanade method considers a 3×3 block that shares the same motion
- then we have a predetermined system of 9 equations and 2 unknowns;
- the solution is obtained by the least squares algorithm;
- is successful in case of small movement

Modification:

- What about the large movement between adjacent frames?
- The solution is a pyramid representation of these images:
- gradual resizing images causes large movements to become small movements
- and small movements are lost
- And we solve the Lukas-Kanade method for each pyramid separately

Sparse Optical Flow

Objective: to solve the problem of correspondence of objects at different moments of movement

- The first step is to find the feature points
- a corner detector is often used

Moravec detector: (r.1980)

- is one of the oldest corner detectors

$$
\begin{equation*}
g(i, j)=\frac{1}{8} \sum_{k=i-1}^{i+1} \sum_{l=j-1}^{j+1}|f(i, j)-f(k, l)| \tag{7}
\end{equation*}
$$

- matching algorithm searches for correspondence of feature points in consecutive images
- the result is a sparse velocity field of these points

Correspondence:

1. specifying all potential correspondences between pairs of feature points;
2. each pair is evaluated by a certain probability indicating the credibility of their correspondence;
3. probabilities are iteratively refined based on the principle of common motion (across multiple frames);
4. the iteration process ends when there is exactly one corresponding feature point from the next image for each feature point in one image

- we take into account the maximum speed
- consistency of point pairs is also important to find correspondence, i.e. the minimum difference in the speed of movement of these points

Types of movement can be described by a combination of four basic movements:
(a) translational motion in the image plane;
(b) remote translation;
(c) rotation around the view axis;
(d) rotation perpendicular to the view axis.
(a)

(b)

(d) $\begin{array}{ll}\rightarrow & H \\ \rightarrow\end{array}$

Phase Correlation

Objective: Estimation of movement between two images

- principle is based on cross-correlation techniques
- we use the frequency spectrum by 2D discrete Fourier transform:
- $G_{F}=\mathcal{F}\{f(i, j, t)\}$ a $G_{B}=\mathcal{F}\{f(i, j, t+d t)\}$

$$
\begin{equation*}
R=\frac{G_{F} \circ G_{B}}{\left|G_{F} \circ G_{B}\right|} \tag{8}
\end{equation*}
$$

- inverse transformation $r=\mathcal{F}^{-1}\{R\}$
- and the offset is obtained as $(\Delta x \Delta y)=\arg \underset{(x, y)}{\max }(R)$ (x, y)
- generally robust to noise, overlaps, etc. (medical, satellite images)
- possible extension by rotation and scale (logarithmic polar coordinates)

Phase Correlation

