
Chapter 1

Image Segmentation

1.1 The Labeling Problem

Většina problémů strojového viděńı se dá vyjádřit jako tzv. problém labelováńı, tj. přiděleńı labelu
každému obrazovému elementu. To specify a labeling problem one has to define a set of sites and a
set of labels first as in [Li, 2009]. Let S index a discrete set of m sites

S = {1, . . . ,m} (1.1)

where 1, ...,m are indices. In vision problems a site doesn’t necessarily have to be an image pixel.
A site can represent any kind of a spel1 or an image feature such as a line, a corner point, edges,
a surface patch, or a volume region. A set of sites may be categorized in terms of their regularity
to spatially regular, e.g. a rectangular 2D image lattice, or spatially irregular, e.g. line segments
and other similar image features extracted in more abstract level. In MRF models the sites are
treated as unordered, i.e. a pixel (i, j) can be reindexed by a single number k ∈ {1, ...,m}. The
interrelationship between two sites is characterized by a neighborhood system.

Let L be a set of labels. In contrast to the definition of the set of sites the set of labels doesn’t
have to be only a discrete set. For example L can represent the dynamic range for an analog pixel
intensity:

Lc = [xl, xu] ⊂ R (1.2)

where xl and xu represents the lower and the upper value of the dynamic range. In the case of
image segmentation the set L is defined on a discrete space

Ld = {1, . . . ,M} (1.3)

in which M denotes the number of labels that corresponds to the number of image segments.
In many cases (image restoration etc.) the label set is ordered, which means that a distance

measure can be defined to describe the qualitative difference between two labels, e.g. the Euclidean
distance. In contrast the segmentation problem often allows only the relationship ”equal” and
”nonequal”.

1Spel (spatial element) can represent one pixel or an arbitrary image region.
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Once both the set of sites and the set of labels are defined one can proceed to assigning a label
to each of the sites. This is called the labeling problem. The labeling of the sites in S in terms of
the labels in L is a set

f = {f1, . . . , fm}. (1.4)

One can look at the labeling as a mapping from S to L:

f : S → L. (1.5)

where each site is assigned a unique label. In the MRF theory, a labeling is often called a configuration
of the field. A total number of possible configurations of a markov field over m sites with M possible
labels is computed as Mm:

F = L × L . . .× L︸ ︷︷ ︸
m times

= Lm. (1.6)

This number is astronomic even for a moderate number of labels and small images thus makes it
impossible for optimizing by brute force.

In some cases possible labels can differ from site to site which gives the configuration space

F = L1 × L2 . . .× Lm = Lm. (1.7)

1.1.1 Types of Labeling Problems

In accordance with the work [Li, 2009], labeling problems can be classified w.r.t. the regularity of
the sites and the continuity of the labels to the following four categories:

• LP1: Regular sites with continuous labels.

• LP2: Regular sites with discrete labels.

• LP3: Irregular sites with discrete labels.

• LP4: Irregular sites with continuous labels.

The first category form problems such as real (non binary) image restoration and smoothing. A
typical representative of LP2 problems is image segmentation where the set of labels are given by
number of image segments. Also edge detection belongs to this category. Object matching based on
image features like corner points or line segments belongs to the category LP3 and a typical example
of LP4 problem is pose estimation from a set of correspondences.

1.1.2 Involving the Contextual Constraints

The use of contextual information is ultimately necessary for proper image understanding as shown
in [Pavlidis, 1986]. The first use of contextual information for solving an image analysis problem is
published in [Chow, 1962].

From the probability point of view, the contextual constraints may be expressed either locally or
globally. For locally expression conditional probabilities P (fi|{fi′}) takes place. Here fi′ denotes
the set of labels at the other sites i 6= i′. To express contextual constraints globally the joint
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probability P (f) is used. Due to the more frequent cases where local information is more directly
observed, a global inference is made based on those local properties.

In situations where no contextual constraints are made the labels are independent of one another:

P (fi|{fi′} = P (fi), i 6= i′. (1.8)

Therefore the joint probability is the simple product of local probabilities:

P (f) =
∏
i∈S

P (fi). (1.9)

While this is advantageous for problem solving in most cases the contextual constraints should be
involved to achieve better image understanding. The equation 1.8 don’t hold anymore and making
a global inference based on local information becomes a nontrivial task.

1.2 The Role of Optimization Principles

The exact solution to a vision problem hardly exist in many cases. This is due to various uncertainties
in involved processes such as noise and other degradation factors. Using an optimization principle
leads to a solution that optimizes a predefined objective function either explicitly or implicitly.

From optimization point of view three basic issues need to be figured out ( [Li, 2009]): problem
representation, formulation of objective function, and deriving an optimizing algorithm. To solve the
first issue the site and label sets have to be defined. Probably the most critical part is formulation
of objective function. It’s a function that maps a solution to a real number and thus reflects the
quality of that solution. The formulation also describes how various image features and contextual
constraints are involved in the optimization procedure. The last issue describes the procedure for
optimizing the objective function. A perfect algorithm should be able to find a local or even the
global extrema of the objective function in an efficient way. The efficiency here reflects not only the
computational time but also the size of searched solution space.

Assume without loss of generality that our goal is to minimize the objective function. Then the
objective function is often called an energy function and it should be formulated so that a solution
to a given problem corresponds to its minimum. Another role of the energy function is to guide the
search through the solution space. From this point of view the minimum should be located in convex
area. The problem that often arise is that a low-quality local minimum is found instead of the global
one or a superior local one. To overcome the problem of finding a local minimum a stochastic method
that can temporarily accept worse solution can be used. A typical member of this kind of methods
is simulated annealing. Of course methods that are able to find global minimum are preferred but
not always usable.

The formal approaches to optimization an energy function provide a convenient ways for the
evaluation of different solutions. For improving the search efficiency by pruning of the solution space
different heuristics can be used. Combining both of the approaches leads to a good strategy for
solving a general optimization task.

An energy function E is defined by its form and parameters involved. The minimal solution is
then expressed as follows:

f∗ = arg min
f
E(f |d, θ) (1.10)
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where f denotes a solution, d are the observed data and θ corresponds to the set o parameters.
Different f and/or d defines a different energy function, which leads to a different optimal solution
f∗. The parameters θ are either known a priori or are estimated from the data.

As already stated above, an energy function in the MRF theory is formulated using established
criteria. Probably the most popular one is the Bayes criteria and the maximal a priori (MAP)
principle that leads to the MAP-MRF framework described in more details in the next section.



Chapter 2

Markov Random Fields Theory

As time goes by optimization principles become more and more popular for solving image analysis
problems. Finding an optimal solution to a vision task is in most real cases impossible due to different
uncertainties. Hence using optimizing principles is a natural way for solving this issues. The solution
can be sought not only explicitly but implicitly as well. For proper solving of a computer vision
task contextual constraints have to be used. The context has a critical influence for understanding
a visual information in images. From this point of view the solution of a problem can be divided to
two subproblems:

1. objective function definition that involved contextual constraints

2. optimizing this objective to find an optimal solution.

Markov random field forms a branch of probability theory and provides tools suitable for the
characterization of contextual constraints. A certain MRF model favors its own class of patterns and
assigns it a higher probability. This is a classical probability approach used in many classifiers. The
added value of MRF is the possibility of involving the contextual constraints. Together with decision
and estimation theory MRF can be interpreted as a systematic way for developing algorithms and
thus avoiding the use of ad hoc heuristics. One such an approach is the maximum a posteriori
(MAP) concept that leads to MAP-MRF framework, which is one of the most used approaches. The
MAP-MRF framework was introduced in [Geman and Geman, 1984].

The issue of involving needed contextual constraints while defining a objective function is solv-
able by MRF theory, which is both convenient and consistent. For this purpose conditional MRF
distributions are used, which describe mutual influences between each other. From these conditional
distributions the joint distribution need to be derived in most applications. But in case of MRF’s this
task turns out to be very difficult. A breakthrough in the area of practical use of MRF’s represents
the Hammersley-Clifford theorem stating the equivalence between MRF’s and Gibbs distribution. It
was established in [Hammersley and Clifford, 1971] and further extended in [Besag, 1974]. Using this
theorem the joint distribution of MRF’s can be replaced by Gibbs distribution, which is of a simple
form.

Uzavrit to tak, aby plynule navazovala dalsi sekce
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2.1 Spatial Relation of Sites

To specify contextual constraints between sites one has to define their spatial relation first.
něco přidat, možná smoothnes prior

2.1.1 Neighborhood System

The spatial relation between sites from the set S can be specified by a neighborhood system:

N = {Np|∀p ∈ S} (2.1)

whereNp denotes the set of all sites that neighboring with given site p. One property of neighborhood
system is that a site is not neighboring to itself, i.e. p /∈ Np. Another important property is the
mutuality, i.e. if a site i is neighbor of another site q 6= p, than q is also neighbor of the site p:
p ∈ Nq ⇐⇒ q ∈ Np.

A typical definition of a neighborhood system is via a distance measure.

Np = {q ∈ S | [dist(sq, sp)]
2 ≤ r2, q 6= p} (2.2)

where r denotes the radius and dist is an arbitrary distance measure. Defining the system this way
is suitable for both regular and irregular set of sites.

In most cases the Euclidean distance is used, especially for the irregular sites. The Euclidean
distance between pixels (p, q) and (r, s) in the 2D image is as follows:

DE ((p, q), (r, s)) =
√

(p− r)2 + (q − s)2. (2.3)

The main advantage of Euclidean distance is its intuitive meaning. On the other hand, due to the
square root its calculation is costly. In the case where sites are placed on a regular lattice another
distances can be used to overcome the problems time efficiency. The Manhattan distance (or city
block or D4 distance) is described as a minimal number of elementary steps in the digital grid which
are needed to move from one point to another [Sonka et al., 2007]:

D4 ((p, q), (r, s)) = |p− r|+ |q − s|. (2.4)

Another representative that is often used in discrete cases is the chessboard distance (or D8). In
comparison with the Manhattan distance the diagonal moves are allowed here:

D8 ((p, q), (r, s)) = max{|p− r|, |q − s|}. (2.5)

The most used types of neighborhood system is the first (von Neumann) and second (Moore)
order system. Its 2D version are shown in figure 2.2.

2.1.2 Cliques in a Graph

For further use the term clique in a graph needs to be defined. A graph can be represented by a set
of nodes V and a set of edges E between those nodes, i.e. G , (V, E). Next let the edges be derived
based on a neighborhood system N . Then a subset c ⊂ S is called a clique if every pair of sites in



Chapter 2. Markov Random Fields Theory 7

Figure 2.1: Different distance measures

(a) (b)

Figure 2.2: Most common types of neighborhood systems are the first (a) and the second (b) order
systems.

this subset are neighbors, i.e. ∀sp, sq ∈ c, p 6= q : sp ∈ Nq. In other words for each pair of sites in
a clique there exists an edge in E between corresponding nodes: ∀sp, sq ∈ c, p 6= q : (sp, sq) ∈ E .
The cliques can be categorized w.r.t. the number of sites/nodes from which they consists. The
cliques can be of the order of one - c1 = {p}, two - c2 = {p, q} and so on. Based on their order
they’re called singletons, doubletons etc. The set of all cliques of the first order is denoted C1, of the
second order C2 and so on. The set of all cliques is then denoted C = C1 ∪ C2 . . . Cn where n is the
maximal clique order.

For the first order neighborhood system 2.2a there is the total number of three cliques corespond-
ing to the singleton and the horizontal and vertical doubletons shown in 2.3a and 2.3b, respectively.
In the case of the second order neighborhood system 2.2b there’re also the diagonal doubletons 2.3c,
the tripletons 2.3d and the quadrupletons 2.3e.

The total number of cliques grows rapidly with increasing order of the neighborhood system. To
overcome computational expenses only the first or second order neighborhood system is used in most
cases.
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(a) (b) (c)

(d) (e)

Figure 2.3: Cliques on a regular lattice: singleton (a), doubletons (b) and (c), tripletons (d) and a
quadrupleton (e).

2.2 The MAP-MRF Framework

To describe the motivation for using a probability theory and MAP principle specifically, lets define

a set of image features d = {
−→
d s : s ∈ S} (a so called observation) and the a set of labels

f = {fs : s ∈ S, fs ∈ L} as earlier. For an image of size N ×M , there are the total number
of |L|NM possible labelings. That’s an intractable set of possibilities even for a moderate size of
images. To decide which of them is the right one the probabilistic approach can be used. This
leads to a definition of a probability measure over the set of all possible labelings and choosing the
most probable one. In other words one need to define a measure P (f |d) that corresponds to the
probability of a lebeling f given observation d. Then the goal is to find an optimal labeling f̂
that maximizes this probability P (f |d). This procedure is called the Maximum a Posterior (MAP)
estimate:

f̂MAP = arg max
f∈F

P (f |d) (2.6)

where F denotes a set of all possible labelings.
Sometimes this is called an inverse problem, where one tries to recover a large number of unknown

or hidden variables - f in our case. This procedure is based on another set of variables called
observation - d in our case. The observation corresponds to image features derived in advance. Both
of the sets can be of the same nature, e.g. two images in restoration problems, or of completely
different nature, e.g. an input image and a labeling in segmentation task. In some cases more than
one observation need to be used for inference of the hidden variables, e.g. two input images in stereo
vision.

For computing the posterior probability the Bayes rule is used:

P (f |d) =
p(d|f)P (f)

p(d)
. (2.7)

Here P (f) denotes the prior probability of labelings (often called simply prior) f and p(d) is the
density function of d. The last term p(d|f) is the conditional probability density function (p.d.f.)
of the observation d for given labeling f . This is called the likelihood function of f for fixed d also
known as the evidence for the labeling f from the observation d and it describes how the labeling f
fits given data d. For given data d the density p(d) is constant thus simplifying the equation 2.7 to

P (f |d) ∝ p(d|f)P (f). (2.8)
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To solve this equation one need to define both of the terms p(d|f) and P (f) and to do that the
MRF theory is used.

Validation of Modeling? MRFMIA str. 18

2.3 Markov Random Fields

To be consistent with previous definitions the MRF will be defined in terms of graph theory. Having
this in mind the MRF can be defined as a graph G = (V, E), where V = {1, 2, . . . , N} denotes
the set of nodes. Each node is associated with a random variable Fp for p = 1, 2, . . . , N , each
random variable can take a value fp ∈ L. To define the set of edges E the neighborhood system N
must be known. The set of nodes to which the node p is adjacent defines its neighborhood Np, i.e.
q ∈ Np ⇐⇒ (p, q) ∈ E . The set Np is called the Markov blanket of node p.

A realization of the MRF f , i.e. an event where each node takes a value f = {f1, f2, . . . , fm},
is called a configuration of that field. The probability that a random variable Fp takes the value
fp is denoted P (Fp = fp) = P (fp) and the probability of a configuration f is denoted P (F =
f) = P (f). In the case of continuous set of possible labels L the probability density functions
p(Fp = fp) and p(F = f) are used instead.

If a random field (RF) is to be a Markov random field two following conditions must be satisfied:

1. positivity:
P (f) > 0, ∀f ∈ F (2.9)

2. Markovianity:
P (fp|{fq}j∈V\i) = P (fp|q ∈ Np) = P (fp|fNp) (2.10)

The positivity guarantees that the joint probability P (f) of any random field is uniquely deter-
mined by its local conditional probabilities as stated in [Besag, 1974]. The Markovianity describes a
knock-on effect where explicit short-range linkages give rise to implied long-range correlations ( [Blake
et al., 2011]). This feature is the great attraction for using MRFs.

To specify a MRF two approaches can be used. The first one is based on conditional probabilities
P (fi|fNi) and the second one is based on joint probability P (f). The former approach is preferred
still there were some problems using it. Fortunately, the already mentioned Hammersley-Clifford
theorem defines the equivalence between MRFs and Gibbs distributions that provides mathematical
tools for specifying the joint probability of a MRF.

2.4 Gibbs Random Fields

A set of random variables F forms a Gibbs random field (GRF) on the set of sites S w.r.t the
neighobrhood system N if and only if its configurations obey a Gibbs distribution of the following
form:

P (f) =
1

Z
× e−

1
T
E(f) (2.11)

where T is a constant called temperature that controls the sharpness of the distribution, E(f)
denotes the energy function of a configuration f and Z is a normalizing coefficient often called the
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partition function. It ensures that that the distribution sums to 1 and takes the following form:

Z =
∑
f∈F

e−
1
T
E(f) (2.12)

The advantage of the Gibbs distribution is that the energy function can be easily expressed as a sum
of clique potentials Vc(f):

E(f) =
∑
c∈C

Vc(f) (2.13)

where C is the set of all possible cliques in a graph.
The equation 2.13 can be rewritten in a form that couples cliques based on their order:

E(f) =
∑
{p}∈C1

V1(fp) +
∑

{p,q}∈C2

V2(fp, fq) + . . .+
∑

{p,q...}∈Cn

Vn(fp, fq . . .) (2.14)

where n denotes the maximal clique order. If the first order neighborhood system is used only the
cliques of order up to two are considered. This is an important special case that is very often used
for solving vision problems. The equation 2.14 then simplifies to the following form:

E(f) =
∑
{p}∈C1

V1(fp) +
∑

{p,q}∈C2

V2(fp, fq) = Edata(f) + Esmoothness(f) (2.15)

The first term Edata of equation 2.15 is often called simply the data term and evaluates the fit of the
labeling to the observation. The second term Esmoothness of equation 2.15 is often called simply the
smoothness term and encourages homogeneous regions. In literature the data term of site p is often
denoted as Dp(fp) and the smoothness term between two sites p and q as Vp,q(p, q). Vi with i
been a numeric index denotes a clique potential of the clique of i-th order. Thus, the equation 2.15
can be rewritten as follows:

E(f) = Edata(f) + Esmoothness(f) =
∑
p∈S

Dp(fp) +
∑

{p,q}∈N , p,q∈S

Vp,q(fp, fq) (2.16)

This notation will be used further in this text.
One problem that must be solved to calculate a Gibbs distribution is evaluation of the partition

function Z. As already stated, the set of all possible labelings F is intractable even for moderate
number of random variables. Therefore one of approximation methods is often used to deal with this
problem. priklad metody?

From the equation 2.11 is clear that more probable configurations are those with smaller energy,
in other words, the lower the energy of a configuration the higher its probability. Therefore finding
the most probable configuration of an GRF is another energy minimizing task.

2.5 Hammersley-Clifford Theorem

The main difference between a MRF and a GRF lies in their characterization. An MRF is charac-
terized by the Markovianity, i.e. its local property, whereas an GRF is characterized by the Gibbs



Chapter 2. Markov Random Fields Theory 11

distribution, i.e. its global property. As already said, the motivation for using GRF is the possibility
of defining the energy function in terms of clique potentials. Fortunately, the Hammersley-Clifford
theorem stated in [Hammersley and Clifford, 1971] establishes the equivalence between MRFs and
GRFs.

The mentioned theorem is as follows:

Theorem 1. . . . given the neighbourhood structure of the model, for any set of sites within the lattice,
their associated contribution of the Gibbs energy function should be non-zero, if and only if the sites
form a clique. The contribution of each clique may be assigned arbitrarily.

In other words, the set of random variables F is an MRF on the set of sites S w.r.t. the
neighborhood system N if and only if F is a GRF on the same set of sites S w.r.t. the same
neighborhood system N . A proof of this theorem can be found for example in [Besag, 1974].

A MRF can have two important properties - homogenity and isotropy. A MRF is said to be
homogeneous if the conditional probability P (fp|fNq) is independent of the relative location of the
node/site p in S. The homogenity is assumed in most MRF vision models making the computations
more convenient. Moreover, to define an RF that is not homogeneous is much more difficult. A
MRF is said to be isotropic if the clique potentials Vc are independent of the orientation of the
clique c. This property is met if undirected graphs are used for describing a vision problem, e.g.
image segmentation in most cases.

2.6 Models of Markov Random Fields

The Hammersley-Clifford theorem allows a very general basis for the specification of MRF joint
distribution function that is based on clique potentials. One particular, important and very often
used group of MRF models are called auto-models by [Besag, 1974]. The form of auto-models can
be derived from the dual energy equation 2.15 when Dp = fpGp(fp) and Vp,q = βp,pfpfq. The
Gp(fp) are unspecified functions and βp,q denotes pre-defined model parameters which reflects the
pair-site interactions. The energy function of auto-models is then characterized as follows:

E(x) =
∑
{p}∈C1

fpGp(fp) +
∑

{p,q}∈C2

βp,qfpfq (2.17)

The auto-models can be further classified w.r.t. the specifications of individual terms in energy
function 2.17. Probably the most used are the Ising and the Potts model that are described in more
details in following text.

2.6.1 Ising Model

One of the basic feature of our world is the smoothness. The world preserves smoothness not only in
time but also in space assuming that physical properties in close neighborhood or in a short interval
of time don’t change abruptly. Transferring this assumption to the domain of image processing can
be expressed as an assumption that site labels in close neighborhood should be the same. In other
words, changing labels should be penalized in some way. And exactly this assumptions is encoded
in Ising and Potts models.
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(a) β = 0.7 (b) β = 1.1 (c) β = 2

Figure 2.4: Samples from Gibbs distribution of an Ising model for different values of the parameter
β. Images taken from [Perez, 1998].

The Ising model is a binary model which means that each site can be assigned with one out of
two labels, i.e. L = {0, 1} or sometimes L = {−1,+1}. Another assumption is that only the first
order neighborhood system 2.2a is used. The energy function can be then written as follows:

E(f) =
∑
{p}∈C1

αpfp +
∑

{p,q}∈C2

βp,qfpfq (2.18)

where βp,q as called the interaction coefficients. In the case where homogenity is preserved the
coefficients αp and βp,q are independent on the position of site p, i.e. αp = α and βp,q = β.

The Ising model allows to define the interaction potentials in the form of label discontinuities.
The parameter β can be interpreted as a penalty for discontinuity and the interaction potentials can
be defined as follows:

Vp,q(fp, fq) = β|fp − fq| = βδ(fp, fq) (2.19)

where δ(fp, fq) is the Kronecker delta:

δ(fp, fq) =

{
1 if fp 6= fq
0 if fp = fq

(2.20)

This model prefers configurations with large-scale agreement between the labels of adjacent sites,
i.e. it prefers few large areas in the image over many smaller ones. The interaction term can be
interpreted also as a penalty for boundary - the total penalty of the interaction term is the total
perimeter of boundaries separating individual regions times β. Having this in mind the interaction
potential can be rewritten in the following form:

Vp,q(fp, fq) = β · (boundary length) (2.21)

thus making the longer boundaries less probable. The boundary length is given by Manhattan (D4)
distance.

The influence of the parameter β is shown in figure 2.4 where few samples from the Gibbs
distribution that corresponds to the Ising model are shown.
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2.6.2 Potts Model

The Ising model described in the previous section is usable in the case where there’re only two
possible labels, e.g. binary image segmentation. However, many vision task need to solve problems
with more than two discrete labels. For this purposes the Ising model can be generalized to the Potts
model, where there are M > 2 discrete labels in the label set L = {1, 2, . . . ,M}. The interaction
potentials can be defined as follows:

Vp,q(fp, fq) =

{
βc if fp 6= fq
−βc if fp = fq

(2.22)

The parameter βc denotes the cost of an edge connecting nodes with different labels and depends
on the type c of the clique. In the case of isotropic model the clique potentials are independent
of the orientation, which means that βc = β, ∀c ∈ C2. As β increases, regions become more
homogeneous.

2.6.3 Other Models

Gaussian MRF, mozna FRAME

2.7 Optimization techniques

Currently, lot of methods for finding local minimum are available but to find a global minimum of a
function is still a big challenge. Methods for global minimization can be based on finding the exact
global minimum or an approximation. The use of the former methods usually yields to an exhaustive
search and inefficient algorithms. Approximative methods are efficient in both the computational
load and the size of search space but the result is still only an approximation that could be far away
from the exact solution.

2.7.1 Simulated Annealing

The problem of global minimization is to overcome cases where the methods stuck in a local mini-
mum. To solve this problem an approach that allows accepting of possible worse configurations, i.e.
configurations with higher energy, can be used. Probably the best known representative of this kind
of methods is simulated annealing independently introduces by [Černý, 1985] and [Kirkpatrick et al.,
1983].

Simulated annealing (SA) is based on physical annealing process in which a physical substance is
melted and then cooled down in search of a low energy configuration. It’s an iterative procedure where
in each step neighbours of the current state are examined. In classical methods the algorithm moves
only to a state with lower configuration which makes it prone to getting stuck in local minima. The
SA algorithm allows moving to states with higher energy with a probability proportional to current
temperature T . As the temperature T goes down the probability of accepting such a worse state is
smaller.

[Metropolis et al., 1953] simulated the annealing process using the Monte Carlo technique.
Assume that a configuration f ∈ F can change to its neighbouring configuration f ′ ∈ F . The
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probability of this change at the temperature T is denoted as P (f → f ′, T ). To calculate this
probability one can use the Metropolis criterion where the probability of acceptance of the new state
is given by following equation:

P (f → f ′) =

{
1, for E(f) < E(f ′)

e−(E(f)−E(f ′))/T for E(f) ≥ E(f ′)
(2.23)

In case where the new configuration has higher energy, the probability is inversely proportional to the
temperature and difference between the energy of the two configurations. The higher the temperature
and/or the difference the lower the energy. This means that accepting a less profitable configuration
is more probable in the early stages of computation where the temperature is still high.

Initially, when the temperature is high, the probability distribution P (f, T ) is uniform, i.e. the
probability doesn’t reflect the goodness of the configurations. As the temperature approaches to
zero, the probability distribution P (f, T ) is concentrated around the peaks of P (f), i.e. the fittest
configurations are preferred.

The procedure in which the temperature is decremented - so called cooling schedule, plays an
important role in the speed of the convergence. In [Geman and Geman, 1984] the cooling schedule
takes following form:

T {t} =
C

ln(1 + t)
(2.24)

where the parameter C is a constant. Another cooling schedule can be found for example in [Kirk-
patrick et al., 1983].

2.7.2 Genetic Algorithms

Genetic algorithms are methods based on heuristic approaches introduced for example in [Holland,
1975] and [Goldberg, 1989]. They’re inspired by the principle of natural evolution in the biological
world where the rule of the survival of the fittest takes place. The natural selection is guided by the
quality of individuals that ensures that better individuals will survive to the next generation.

Genetic algorithm is parallel in its nature - it stores several solutions that are called individuals,
the set of all solutions in a given time is called a population. One individual is given by its chromo-
zome, i.e. a set of genes. A value of a gene is often called an allele. In labeling process one gene can
represent a certain site and its allele value correspond to one of the class labels. The fitness of the
individual then corresponds to the energy of given labeling, which can be calculated in the sense of
MRF. When most (typically over 90%) of individuals share the same value of one particular gene
then we say that this gene have converged. When all the genes have converged then we say that the
population have converged.

Recombination

To produce new individuals, i.e. possible solutions, a process called recombination is applied. The
recombination could be seen as an unary or a binary operator. The latter one is called crossover. The
input of the crossover are two individuals that are combined in a certain way to create two offsprings.
The parents are chosen w.r.t. their fitness, i.e. the better the individual the higher the probability
that it will be chosen, for more information see [Bäck, 1996]. This simulates the natural selection.
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Figure 2.5: Illustration of the crossover operator based on a point.

Figure 2.6: Illustration of the crossover operator based on a matrix.

With this in mind, the offsprings bear the information of a possible good solution. Furthermore, the
combination of two such a individuals can lead to a new even better one.

The unary recombination process is the mutation. Its role is to slightly change one or more genes
of an individual to produce different one. Thus the mutation has similar role as the temperature
parameter in simulated annealing, i.e. to prevent of getting stuck in a local minimum.

A scheme of a standard genetic algorithm is shown in Algorithm 1.
The recombination processes are not always invoked. The probability of the crossover is some-

where between 0.6 and 1 [Li, 2009] and the probability of the mutation is typically 0.0001. To define
where the crossover takes place several approaches exists. One such an approach is to randomly
derive a crossover point. To this point all genes takes value from the first parent and after this point
from the second parent as shown in fig. 2.5. In the case of images an approach based on random
mask can be used. In this case a binary mask is derived that specifies from what parent a gene takes
value as shown in fig. 2.6. The disadvantage of this approach is that it could break a homogeneous
areas with no obvious progress. The mutation operator is shown in fig. 2.7.

To prevent situations where a good solution can be lost due to the recombination one can use a
process called elitism. Here, a portion (typically 10% of the total number of individuals) are saved

Figure 2.7: Illustration of the mutation operator.
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begin
generate initial population P = {f1, . . . , fn}
repeat

compute E(f) ∀f ∈ P
// creating new population

Pnew = {}
repeat

fa, fb = individuals selection(P )
// crossover

if rand[0, 1] < τcrossover then
f1, f2 = crossover(fa, fb)

else
f1 = fa

f2 = fb

end
// mutation

for f i ∈ {f1, f2} do
if rand[0, 1] < τmutation then

f i = mutation(f i)
end

end
Pnew = Pnew ∪ {f1, f2}

until new population created
P = Pnew

until termination condition satisfied
return(arg minf∈P E(f))

end

Algorithm 1: A standard genetic algorithm

and then replaces the same portion of the worst individuals. One thing that should be highlighted
is that having few bad individuals is not necessarily a disadvantage. These individuals bear a
different information that could produce, in combination with a good individual, a solution that can
outperform all others. Moreover, bad individuals are also helpful for getting of a local minimum and
for searching a different part of the solution space.

Locust Swarm

Though the main principle remains the same, many different genetic algorithms exists that differs
for example in the chromozome representation or in the way the recombination is done. A well
known example of such a different approach are locust-based methods that were firstly introduced
in [Kennedy and Eberhart, 1995] and further used for example in [Park and Song, 1998] and [Amelio
and Pizzuti, 2012].
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(a) (b)

Figure 2.8: In lucust swarm methods allele values represents links to neighbors (a). Given individual
represents segmentation shown in (b).

IN this approach, the allele values don’t represent class labels. Instead they represent another
genes thus making links between each other. The more similar two neighboring genes are the higher
the probability that a link will be created between them. One gene can have more than one allele value
and the recombination is done by switching an combining those alleles. The final image segments
are represented by individual connected components that are created as the algorithm evolves.

The inspiration of this algorithm comes from the behavior of a swarm. The swarm is formed by
many individuals of the same species, i.e. bees or grasshoppers, where each individual follows only
a few of his neighbors. The swarm behavior is then given by combination of the behavior of several
smaller groups.

Comb Algorithm

A combination of local search methods and genetic algorithms yields to a hybrid approach often
called a memetic algorithm, for more information see [Moscato, 1989] or [Li, 2009]. The main idea of
this method is to preserve any good information found so far. Such a good information is represented
by sharing the same value of a particular gene through different individuals. This means that if the
allele value of a gene i in an individual a is the same as the allele value of the same gene i in a
different individual b, i.e. fai = fbi , then it is probable that this information is a good one and
should be saved in both offsprings f1

i , f2
i . Else an allele value to be inherited in an offspring is

randomly chosen from the values of the parents.
The evolutionary part of this algorithm lays in the combination of two different local minima that

were already found. This crossover like procedure, sometimes called comb initialization, produces
two new starting points for the subsequent local search method that yields to possible new solutions.
If the energy of a new solution is lower than any of the solutions found so far, than it replaces the
worst one.

The pseudocode of the comb initialization is shown in Algorithm 2 and the pseudocode of the
whole Comb algorithm is shown in Algorithm 3.
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begin
for i ∈ S do

// uniform crossover

if fai == fbi then
f1
i = f2

i = fai
else if rand[0, 1] < 0.5 then

f1
i = fai
f2
i = fbi

else
f1
i = fbi
f2
i = fai

end
// mutation

if rand[0, 1] < τmutation then
f1
i = rand(L)

end
if rand[0, 1] < τ then

f2
i = rand(L)

end

end

end

Algorithm 2: Comb initialization

begin
initialize F = {f1, . . . , fN}
repeat

fa, fb = random selection(F )
f1, f2 = Comb initialization(fa, fb)
f1∗ = steepest descent(f1)
f2∗ = steepest descent(f2)
F = update(F , f1∗, f2∗)

until termination condition satisfied
return(arg minf∈F E(f))

end

Algorithm 3: Comb algorithm
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2.7.3 Min Cut / Max Flow

The main goal of this method is to find a minimum cut in a graph that represents an image. Finding
such a minimum cut is not a trivial task. Fortunately, the minimum cut problem is equivalent to the
maximum flow problem as stated in the Ford-Fulkerson theorem that was introduced in [Ford and
Fulkerson, 1956]. Finding a maximum flow belongs to the classical optimizing problems.

The first step is to obtain a weighted graph G(V, E) from the image, where V represents set of
nodes and E represents set of edges. Each node corresponds to an image site, i.e. V = {p|p ∈ S}
where S is traditionally a set of all image sites. Each edge between these nodes corresponds to a
neighboring relationship between these nodes, i.e. E = {ep,q|p, q ∈ V, p ∈ Nq}. These edges are
often called n-links (neighborhood links). The graph contains two additional nodes, the source s and
the sink t, respectively. The former one represents an object while the latter one the background.
These special nodes are called terminals. Each node from the set V is connected to the terminals
with a link called t-link (terminal link). An illustration of a graph constructed this way is shown in
figure 2.9(c).

(a) (b)

(c) (d)

Figure 2.9: Illustration of image segmentation by graph cut. The input image 2.9(a) and its cor-
responding graph 2.9(c) is segmented by a cut shown in 2.9(d) which yields the final segmentation
2.9(b).

We can imagine the graph like a pipeline system (in the basic version of Graph cut method).
Each pipe has its own capacity given by the weight of the corresponding edge. Segmentation consists
in gradual filling this pipeline with a medium through the source and the leakage of this medium
through the sink. Some of the pipes become saturated in this process, which means that through
this pipe flows the maximum value of the medium given by its capacity. After a certain amount of
the medium was sent to the system, there can occur a state in which there isn’t a path from the
source to the sink without any saturated edge. In this case the segmentation ends and the object
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is separated from the background by the set of the saturated edges. This set of saturated edges
represents a cut of the graph.

In other words, a cut on a graph is a set of edges C ⊂ E such that the terminal nodes are
separated in the induced graph G(C) = {V, E −C}. Moreover, there isn’t a subset C′ of C that will
separate the terminals in G(C). The cost of a cut is denoted as |C| and corresponds to the sum of all
edges in this cut. This value is equal to the value of maximal flow that can be sent to the graph as
said in the already mentioned Ford-Fulkerson theorem ( [Ford and Fulkerson, 1956]). The figure 2.9
illustrates the process of image segmentation, where the input image 2.9(a) and its corresponding
graph 2.9(c) is segmented by a cut shown in 2.9(d) which yields the final segmentation 2.9(b).

The energy that is minimized by this process takes the typical form given by equation 2.15. One
common example how to define the data term (see equation 2.25) and the smoothness term (see
equations 2.26 and 2.27) that yields neither to the Ising nor the Potts model is formulated in [?]:

Vp,q(fp, fq) = exp

(
−

(Ip − Iq)2

2σ2

1

||p, q||

)
(2.25)

Dp(p|obj) = − ln (P (Ip|Obj)) (2.26)

Dp(p|bgd) = − ln (P (Ip|Bgd)) (2.27)

where p, q are two different image sites that are ||p, q|| far apart and have intensities Ip and Ip,
σ can be interpreted as expected intensity variation within the object and/or background. The
probabilities P (Ip|Obj) and P (Ip|Bgd) describe how the intensity value Ip fits to object or back-
ground, respectively. Following these equations one can assign weights to individual edges as shown
in following table:

edge weight for

(p, q) Vp,q(fp, fq) (p, q) ∈ N

λDp(p|bgd) p ∈ S, p /∈ (O ∪B)

(s, p) K p ∈ O

0 p ∈ B

λDp(p|obj) p ∈ S, p /∈ (O ∪B)

(p, t) 0 p ∈ O

K p ∈ B

Table 2.1: Edge weights for graph cut image segmentation. Constant K is big enough so that the
given edge gets never saturated.

There’re two basic algorithms for finding the maximum flow in a graph. The first one is so
called push-relabel algorithm introduced by [Goldberg and Tarjan, 1988], the second one is based on
augmenting paths and was firstly presented in [Ford and Fulkerson, 1956] and [Ford and Fulkerson,
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1962]. A relatively new approach which outperforms the former ones is formulated in [Boykov and
Kolmogorov, 2001]. This algorithm is based on two competitive trees that ”grow” in image domain
and try to occupy image sites.

2.7.4 Graph Cut With Large Moves

In paper [Boykov et al., 2001] the problems of finding a global optimum are discussed. A labeling f
is said to be a local minimum of the energy E if

E(f) ≤ E(f ′) for any f ′ ”near to” f. (2.28)

The nearness of two labelings is defined in the sense of a single optimization move. Many optimization
algorithms can change label only of one site at a time - these moves are called standard moves
in [Boykov et al., 2001]. This often yields to poor results as shown in figure 2.10. In contrary,
algorithms described in this section use large moves that allows changing labels of arbitrarily large
set of image sites simultaneously. Thanks to that the algorithms are very efficient in approximating
the energy minimization.

(a) (b) (c) (d)

Figure 2.10: Comparison of image restoration. The input image is shown in (a) and its noisy
observation in (b). Using standard moves yields to low quality solution (c). The solution (d) is
obtained using expansion moves. Images were taken from [Boykov et al., 2001].

Expansion Moves

The alpha expansion algorithm is based on successive labeling all α and non-α sites with graph cuts.
In each iteration an optimal expansion move is determined that expands the α label in an optimal
way. The algorithm then continues with another label. The pseudocode of α expansion algorithm is
shown in alg. 4.

In each iteration a graph Gα is constructed that reflects current labeling. The set of vertices
contains not only image sites p ∈ S but two terminals α and ᾱ as well. In addition, an auxiliary
node is created between each pair of neighboring sites that have different label. Each site is connected
to the both terminals with links tαp and tᾱp . Between each pair of neighboring sites {p, q} ∈ N with

different labels fp 6= fq a triplet of edges E{p,q} = {e{p,a}, e{a,q}, tᾱa} is created, where a is the



Chapter 2. Markov Random Fields Theory 22

Start with an arbitrary labeling f
begin

repeat
for each label α ∈ L do

f̂ = arg minE(f ′) among f ′ within one α expansion move of f
if E(f ′) < E(f) then

f = f ′

improved = True
else

improved = False
end

end

until not improved

end

Algorithm 4: Alpha expansion

corresponding auxiliary node. An example of a graph constructed this way is shown in fig. 2.11 and
weights of individual edges are shown in table 2.2.

Figure 2.11: An example of Gα with sites p, q, r and s, terminals α and ᾱ and two auxiliary nodes
a and b. Three different partitions are shown in this graph: S1 = {p}, S2 = {q, r} and Sα = {s}.

To use this algorithm the interaction term V (α, β) have to be a metric. V (α, β) is called a
metric if it satisfies the following three conditions:

V (α, β) = 0 ⇔ α = β (2.29)

V (α, β) = V (β, α) (2.30)

V (α, β) ≤ V (α, γ) + V2(γ, β) (2.31)

for any labels α, β, γ ∈ L. The use of expansion moves in case where the interaction term is a
metric brings a very strong optimality property. This property says that a local minimum found by
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edge weight for

tᾱp ∞ p ∈ Sα

tᾱp Dp(fp) p /∈ Sα

tαp Dp(α) p ∈ S

e{p,a} Vp,a(fp, α)

e{a,q} Va,q(α, fq) {p, q} ∈ N , fp 6= fq

tᾱa Vp,q(fp, fq)

e{p,q} Vp,q(fp, α) {p, q} ∈ N , fp = fq

Table 2.2: Edge weights for a Gα used in α expansion algorithm.

the expansion moves is within a known factor c of the global minimum - described in [Boykov et al.,
2001] as following theorem:

Theorem 2. Let f̂ be a local minimum when the expansion moves are allowed and f∗ be the globally
optimal solution. Then E(f̂) ≤ 2cE(f∗).

The factor c is defined in the next equation:

c =
maxα 6=β∈L V2(α, β)

minα 6=β∈L V2(α, β)
(2.32)

If the interaction term is dependent on a neighboring pairs (p, q), then the previous equation is
changed to following:

c = max
{p,q}∈N

(
maxα 6=β∈L V2(α, β)

minα 6=β∈L V2(α, β)

)
(2.33)

In a special case when the interaction term is given by the Potts model (already described in the
section 2.6.2). In this case, discontinuities between any pair of labels are penalized equally, thus the
factor c is given by the equation 2.32. Moreover, as shown in [Boykov et al., 2001] the factor c = 1
and thus the local minimun is within a factor of two of the global minimum.

Swap Moves

The alpha-beta swap algorithm is based on successive labeling all α and β sites with graph cuts. In
each iteration an optimal swap move is determined that change labels between segments α and β.
This is done successively for each pair of labels {α, β} ∈ L. The pseudocode of α-β swap algorithm
is shown in alg. 5.

Similarly as in the expansion algorithm, a graph Gαβ = {Vαβ, Eαβ} is constructed in each
iteration with its dynamically determined by the current labeling. Let the sites with label α and
β be denoted Sα and Sβ, respectively. Next let the set of sites with label α or β be denoted
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Start with an arbitrary labeling f
begin

repeat
for each pair {α, β} : α, β ∈ L do

f̂ = arg minE(f ′) among f ′ within one α-β swap move of f
if E(f ′) < E(f) then

f = f ′

improved = True
else

improved = False
end

end

until not improved

end

Algorithm 5: Alpha-beta swap

Sαβ = Sα ∪ Sβ. Then the set of vertices contains two terminals α and β and sites with label α or
β. Each vertex is connected to the terminals by edges tαp and tβp , respectively. Between each pair
of neighboring sites {p, q} ∈ N an edge e{p,q} is created. An example of a graph constructed this
way is shown in fig. 2.12 and weights of individual edges are shown in table 2.3.

Figure 2.12: An example of Gαβ with sites p, q, r, s and u and terminals α and β. Two label
segments are shown in this graph: Sα = {p, s, u} and Sβ = {q, r}.

While in the α expansion algorithm have a guaranteed optimality properties, a solution found
by α-β swap algorithm can be arbitrarily far from the global minimum. On the other hand it can
be used for optimization of wider class of energies because the interaction term could be ”only” a
semimetric. An interaction term is said to be a semimetric if only the equations 2.29 and 2.30 are
satisfied, i.e. the triangular inequality doesn’t had to be hold.
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edge weight for

tαp Dp(α) +
∑
q∈Np, q /∈Sαβ Vp,q(α, fq) p ∈ Sαβ

tβp Dp(β) +
∑
q∈Np, q /∈Sαβ Vp,q(β, fq) p ∈ Sαβ

e{p,q} Vp,q(α, β) {p, q} ∈ N , p, q ∈ Sαβ

Table 2.3: Edge weights for a Gαβ used in α-β swap algorithm.

(a) (b) (c) (d)

Figure 2.13: Comparison of standard and large moves from given labeling (a). The α expansion (c)
and the α-β swap (d) change many site labels simultaneously where one standard move of simulated
annealing (b) changes label of a single site (in the circled area). Images were taken from [Boykov
et al., 2001].

In the paper [Boykov et al., 2001] a possibility of achieving a solution within a known factor
from the global optimum even when the interaction term is a semimetric is discussed. The approach
suggests to approximate the semimetric and use α expansion algorithm to get a local minimum.
This minimum is then used as a starting point for successive application of α-β swap algorithm.
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