
Lesson 08
Convolutional Neural Network

Ing. Marek Hrúz, Ph.D.

Katedra Kybernetiky
Fakulta aplikovaných věd

Západočeská univerzita v Plzni

Lesson 08

Convolution

I we will consider 2D convolution
I the result of convolution: for each point it tells us the area

under the multiplication of signal and kernel

(f ∗ g) [m, n] =
∞∑

i=−∞

∞∑
j=−∞

f [m − i , n − j] · g [i , j] (1)

Lesson 08 1 / 37

Architecture of Convolutional Neural Network

I There can be more variations of the architecture

I The standard architecture for image classification

I Convolution Layer → Max-pooling → Fully connected Layer

Lesson 08 2 / 37

Convolutional Layer

I A special layer inside a Neural Network

I We define size and number of kernels (filters) to be learned,
the stride and padding

I The layer uses the defined kernels to compute ’feature maps’
over the input map as a convolution

I This dramatically reduces the number of parameters in the
layer as opposed to fully connected layer

I Usually the input is the image width × height × channels

I The kernels operate through channels → kernel of defined size
3× 3 really has size 3× 3× channels

I This holds for all other convolutional layers → the number of
kernels in a layer defines the number of channels of its output
feature map

Lesson 08 3 / 37

Output of Convolutional Layer - example

I The first convolutional layer has 32 kernels, thus the output
feature map has depth (number of channels) equal to 32

I If we define the size of kernels in the consecutive layer to be
5× 5 the kernels will have (really) the size of 5× 5× 32

Lesson 08 4 / 37

Output of Convolutional Layer - strides

I The stride defines by how many pixels we move the kernel
until we apply it next time

I Stride one:

Lesson 08 5 / 37

Output of Convolutional Layer - strides

I The stride defines by how many pixels we move the kernel
until we apply it next time

I Stride one:

Lesson 08 6 / 37

Output of Convolutional Layer - strides

I The stride defines by how many pixels we move the kernel
until we apply it next time

I Stride one:

Lesson 08 7 / 37

Output of Convolutional Layer - strides

I The stride defines by how many pixels we move the kernel
until we apply it next time

I Stride one, visited locations:

Lesson 08 8 / 37

Output of Convolutional Layer - strides

I The stride defines by how many pixels we move the kernel
until we apply it next time

I Stride three:

Lesson 08 9 / 37

Output of Convolutional Layer - strides

I The stride defines by how many pixels we move the kernel
until we apply it next time

I Stride three:

Lesson 08 10 / 37

Output of Convolutional Layer - strides

I The stride defines by how many pixels we move the kernel
until we apply it next time

I Stride three:

Lesson 08 11 / 37

Output of Convolutional Layer - strides

I The stride defines by how many pixels we move the kernel
until we apply it next time

I Stride three, visited locations:

Lesson 08 12 / 37

Output of Convolutional Layer - strides

I The stride defines the size of the output feature map

I In the previous example we had an image 10× 10

I With stride one, the output map will be of size 8× 8

I With stride three, the output map will be of size 3× 3

I The stride can be rectangular (eg. 3× 1)

I There are several strategies for choosing strides

I Very often the strides are chosen so that consecutive kernels
overlap

Lesson 08 13 / 37

Output of Convolutional Layer - padding

I Padding is important for managing the shape of the output
feature map

I It is a scalar parameter that determines the width of added
boundary pixels to the input map

I Current implementations support zero valued boundaries

Lesson 08 14 / 37

Output of Convolutional Layer - padding

I Example of padding equal to one, stride equal to three:

Lesson 08 15 / 37

Output of Convolutional Layer - padding

I Example of padding equal to one, stride equal to three:

Lesson 08 16 / 37

Output of Convolutional Layer - padding

I Example of padding equal to one, stride equal to three:

Lesson 08 17 / 37

Output of Convolutional Layer - padding

I Example of padding equal to one, stride equal to three:

I Visited locations

Lesson 08 18 / 37

Computing the convolution

I Let’s consider M kernels Kc , c = 1, . . .M with size k × k
I The size of the input map is W I × H I × C I

I The depth of the output map CO is the number of kernels M
I The width and height of the output map is determined by the

size of the kernels, the strides, and the padding

WO =
W I + 2 · pad− k

stride
+ 1 (2)

I For each output location (x , y , c) and each kernel Kc , where
c = 1, . . . ,M we compute the convolution:

O[x , y , c] =
k−1∑
i=0

k−1∑
j=0

C I−1∑
n=0

I [xs − i , ys − j , n] · Kc [i , j , n] (3)

I where (xs , ys , n) is the proper location in the input map given
the stride and pool

Lesson 08 19 / 37

Activation function

I The output of the convolution is then ’activated’ using
activation function

Omap[x , y , c] = f (O[x , y , c] + b) (4)

I b is the bias term

I The choice of the activation function is arbitrary, up to the
point of being differentiable (or at least have a defined
derivative) on the whole domain

I The mathematical purpose of the activation function is to
model the non-linearity

I But it is not necessary: f (x) = ax is a proper activation
function

Lesson 08 20 / 37

Activation function - sigmoidal

I A family of S shaped functions

I Commonly used in past to model the activity of a neuron cell

I Sigmoid:

f (x) =
1

1 + e−x
=

ex

ex + 1
(5)

I Hyperbolic tangent:

f (x) = tanh(x) =
ex − e−x

ex + e−x
(6)

I There are more possibilities . . .

Lesson 08 21 / 37

Activation function - sigmoidal examples

Lesson 08 22 / 37

Activation function - Rectified Linear Unit

I Most commonly used activation function in CNN

f (x) = max(x , 0) (7)

I non-linear, easy gradient

Lesson 08 23 / 37

Activation function - Rectified Linear Unit Modifications

I PReLU - parametrized ReLU, where the slope of the negative
part is handled as a parameter to be learned via
backpropagation

I Maxout - several linear functions are being learned via
backpropagation and the activation is the max of these

Lesson 08 24 / 37

Activation function - Rectified Linear Impact on Training

I Krizhevsky (2012) reports a much faster learning with ReLU
as opposed to tanh

Lesson 08 25 / 37

Pooling

I Pooling is used to compress the information propagated to the
next level of network

I In past average pooling was used
I More recently (2012) the max pooling was re-introduced and

experiments show its superiority

I Overlapping pooling seems to be important
I Parameters: size of the pooling window, stride of the pooling

window

Lesson 08 26 / 37

Batch Normalization

I Any kind of normalization is important

I Batch Normalization is widely used and is the leading form of
normalization in the means of performance

I The statistics of the output map are computed

I They are normalized so that they have zero mean and unit
variance → well-behaved input for the next layer

I The normalization factors - scale and shift - are remembered
as a running average through the training phase

I Further more the zero mean and unit variance statistics are
scaled and shifted via learned parameters γ, β

I The main idea: decorrelation, any slice of the network has
similar inputs/outputs, faster training

Lesson 08 27 / 37

Classification layer - Softmax

I The best practice for classification is to use softmax

I Softmax is a function

σ(z)j =
ezj∑K
k=1 e

zk
(8)

I that takes the input vector and transforms it to be between
〈0; 1〉 and to sum up to one

I It is a generalization of logistic function

I If j is the index of a class, then σ(z)j is the probability of the
input belonging to class Cj

I The targets are so called ’one hot vectors’ - a vector with one
on the index j and zeros elsewhere

Lesson 08 28 / 37

Learning - Objective function - Classification

I To be able to learn the parameters of the network we need a
objective (criterion, loss) function to be optimized

I For the classification task with softmax layer we use so called
categorical cross-entropy

L(p, q) = −
∑
x

p(x) log q(x) (9)

I where x is the index of the class, p is the true distribution (one
hot vector) and q is the approximated distribution (softmax)

Lesson 08 29 / 37

Learning - Objective function - Regression

I Regression is a form of approximation when we provide inputs
and outputs and are looking for parameters that minimize the
difference between generated outputs (predictions) and
provided outputs

I Mean squared error:

L(Y , Ŷ) =
1

N

∑
i

(yi − ŷi)
2 (10)

I Mean absolute error:

L(Y , Ŷ) =
1

N

∑
i

|yi − ŷi | (11)

I Hinge loss:

L(Y , Ŷ) =
1

N

∑
i

max(1− yi · ŷi , 0) (12)

Lesson 08 30 / 37

Learning - Stochastic Gradient Descent

I To find the optimal values of the parameters ω of the network
(weights and biases), we need to use backpropagation

I That is to compute the partial derivatives of the objective
functions against individual parameters

I CNN has much less parameters than fully connected net →
faster convergence

I The most widespread approach is to use stochastic gradient
descent

ω∗ = argmin
ω

L(ω) (13)

ωt+1 = ωt − ε ·
〈
∂L

∂ω

∣∣∣ωt

〉
Dt

(14)

I where t is the iteration step, ε is the learning rate,
〈

∂L
∂ω

∣∣∣ωt
〉
Dt

is th average over the t-th batch Dt with respect to ω
evaluated at ωt

Lesson 08 31 / 37

Learning - Stochastic Gradient Descent

I The SGD uses mini-batches to optimize the parameters

I A mini-batch is an example of training data - not too small,
not too big

I One run through a mini-batch is called an iteration, a run over
all mini-batches in training dataset is called epoch

I It is very useful to use momentum in the computing of the
gradient

v t+1 = α · v t − β · ε · ωt − ε ·
〈
∂L

∂ω

∣∣∣ωt

〉
Dt

(15)

I where α is the momentum (0.9), β is the weight decay
(0.0005) and then

ωt+1 = ωt + v t+1 (16)

Lesson 08 32 / 37

Overfitting

I Overfitting is a common phenomena when training neural
networks

I Very good results on training data, very bad results on testing
data

Lesson 08 33 / 37

Reducing Overfitting - Data Augmentation

I It is the easiest way of fighting overfitting

I By applying label preserving transformations and thus
enlarging the dataset

I Different methods (can be combined):

1. Taking random (large) crops of the images (and resizing)
2. Horizontal reflection
3. Altering the RGB values of pixels
4. Small geometric transformations

Lesson 08 34 / 37

Reducing Overfitting - Dropout

I This method tries to make the individual neurons independent
on each other

I Mostly used with fully connected layers

I We set a probability of dropout pd
I For each training batch we set output of a neuron to be zero

with probability pd
I Is often implemented as a layer

Lesson 08 35 / 37

Examples - learned kernels

I These are the kernels of the first layer from AlexNet

I Trained no ImageNet 1000-classes, roughly 1.2 millions of
training images

Lesson 08 36 / 37

Examples - results

Lesson 08 37 / 37

