Lesson 08

Ing. Marek Hridz, Ph.D.

Katedra Kybernetiky
Fakulta aplikovanych véd
Z3padoleska univerzita v Plzni

DEPARTMENT OF
CYBERNETICS

>

Convolution

» we will consider 2D convolution
» the result of convolution: for each point it tells us the area
under the multiplication of signal and kernel
o0 oo
(Frg)mnl= S S flm—in—jl-glij] (1)

i=—00 j=—00

output kemel{ﬂipped}input

o
o

S| D | T |
—

Lesson 08

1/37

Architecture of Convolutional Neural Network

» There can be more variations of the architecture
» The standard architecture for image classification

» Convolution Layer — Max-pooling — Fully connected Layer

Lesson 08 2/37

Convolutional Layer

Lesson 08

v

A special layer inside a Neural Network

We define size and number of kernels (filters) to be learned,
the stride and padding

The layer uses the defined kernels to compute 'feature maps'’
over the input map as a convolution

This dramatically reduces the number of parameters in the
layer as opposed to fully connected layer

Usually the input is the image width x height x channels

The kernels operate through channels — kernel of defined size
3 x 3 really has size 3 x 3 x channels

This holds for all other convolutional layers — the number of
kernels in a layer defines the number of channels of its output
feature map

3/37

Output of Convolutional Layer - example

NN

40

Max
6 4

s pooling
16 Max 128 =22

pooling
&
2 Max =8x8
pooling

32 =20x20

45

3(RGB)

2048 2048
maxout({2) maxout(2)

» The first convolutional layer has 32 kernels, thus the output
feature map has depth (number of channels) equal to 32

» If we define the size of kernels in the consecutive layer to be
5 x 5 the kernels will have (really) the size of 5 x 5 x 32

Lesson 08 4/37

Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride one:

Lesson 08 5/37

Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride one:

Lesson 08 6 /37

Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride one:

Lesson 08 7/37

Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride one, visited locations:

Lesson 08 8/37

Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride three:

Lesson 08 9/37

Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride three:

Lesson 08 10 /37

Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride three:

Lesson 08 11/37

Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride three, visited locations:

Lesson 08 12 /37

Output of Convolutional Layer - strides

Lesson 08

The stride defines the size of the output feature map
In the previous example we had an image 10 x 10
With stride one, the output map will be of size 8 x 8
With stride three, the output map will be of size 3 x 3
The stride can be rectangular (eg. 3 x 1)

There are several strategies for choosing strides

Very often the strides are chosen so that consecutive kernels
overlap

13/37

Output of Convolutional Layer - padding

» Padding is important for managing the shape of the output
feature map

» It is a scalar parameter that determines the width of added
boundary pixels to the input map

» Current implementations support zero valued boundaries

Lesson 08 14 /37

Output of Convolutional Layer - padding

» Example of padding equal to one, stride equal to three:

Lesson 08 15 /37

Output of Convolutional Layer - padding

» Example of padding equal to one, stride equal to three:

Lesson 08 16 /37

Output of Convolutional Layer - padding

» Example of padding equal to one, stride equal to three:

Lesson 08 17 /37

Output of Convolutional Layer - padding

» Example of padding equal to one, stride equal to three:
> Visited locations

Lesson 08 18 /37

Computing the convolution

Lesson 08

vVvyVvYyy

Let's consider M kernels K., c = 1,... M with size k x k

The size of the input map is W/ x H x C!

The depth of the output map C© is the number of kernels M
The width and height of the output map is determined by the
size of the kernels, the strides, and the padding

~ W!'+2-pad — k

we® stride 1 (2)
For each output location (x,y, ¢) and each kernel K., where
c=1,...,M we compute the convolution:
k=1k=1C'—1
Oby.cl=> > > Il —iys—j.n]-Keli.jn] (3)
i=0 j=0 n=0

where (xs, ys, n) is the proper location in the input map given
the stride and pool

19/37

Activation function

» The output of the convolution is then 'activated’ using
activation function

Omaplx, y, c] = £ (Ox,y, c] + b) (4)

» b is the bias term

» The choice of the activation function is arbitrary, up to the
point of being differentiable (or at least have a defined
derivative) on the whole domain

» The mathematical purpose of the activation function is to
model the non-linearity

» But it is not necessary: f(x) = ax is a proper activation
function

Lesson 08 20/37

Activation function - sigmoidal

» A family of S shaped functions
» Commonly used in past to model the activity of a neuron cell
» Sigmoid:
1 ex
f(x) = = (5)

1+e X eX+1

v

Hyperbolic tangent:

eX —e™ X

f(X) = tanh(X) = m

v

There are more possibilities . . .

Lesson 08 21/37

xr
—rf () - L J(@)
_ V1 a? 1 _
e tanh (z) — %arctan(ga:)
o 2gd(Zg) e E 0.5 ”
G —
. | . .
-2.5 -2 —-1.5 -1 —0.5 0.5 1.5 2.5
7 —0.54
d
/
= =1
e
rd
s
DEPARTMENT OF
CYBERNETICS

Lesson 08

X

22/37

Activation function - Rectified Linear Unit

» Most commonly used activation function in CNN
f(x) = max(x,0) (7)

10 Rectified Linear Unit (ReLU)

relu(x)

28 6 -7 =2 0 2 1 6

» non-linear, easy gradient

Lesson 08 23 /37

Activation function - Rectified Linear Unit Modifications

» PRelLU - parametrized RelL U, where the slope of the negative
part is handled as a parameter to be learned via
backpropagation

» Maxout - several linear functions are being learned via
backpropagation and the activation is the max of these

4 h A

.
Te.,
.,
e,

RelLU PRelLU Maxout (n=2)

Lesson 08 24 /37

Activation function - Rectified Linear Impact on Training

Lesson 08

» Krizhevsky (2012) reports a much faster learning with RelLU

as opposed to tanh

0.75

0254

Training error rate

Epochs

40

25 /37

Pooling

» Pooling is used to compress the information propagated to the
next level of network
» In past average pooling was used
» More recently (2012) the max pooling was re-introduced and
experiments show its superiority
Single depth slice
1 0 2 3
4
3
1

- o

6 8
1 0
2 4

N

Y

» Overlapping pooling seems to be important
» Parameters: size of the pooling window, stride of the pooling
window

Lesson 08 26 /37

Batch Normalization

Lesson 08

Any kind of normalization is important

Batch Normalization is widely used and is the leading form of
normalization in the means of performance

The statistics of the output map are computed

They are normalized so that they have zero mean and unit
variance — well-behaved input for the next layer

The normalization factors - scale and shift - are remembered
as a running average through the training phase

Further more the zero mean and unit variance statistics are
scaled and shifted via learned parameters v, 8

The main idea: decorrelation, any slice of the network has
similar inputs/outputs, faster training

27 /37

Classification layer - Softmax

Lesson 08

v

The best practice for classification is to use softmax
Softmax is a function
e
K
> k=1 €%

that takes the input vector and transforms it to be between
(0;1) and to sum up to one

(8)

o(z);

It is a generalization of logistic function

If j is the index of a class, then o(z); is the probability of the
input belonging to class ;

The targets are so called 'one hot vectors' - a vector with one
on the index j and zeros elsewhere

28 /37

Learning - Objective function - Classification

» To be able to learn the parameters of the network we need a
objective (criterion, loss) function to be optimized

» For the classification task with softmax layer we use so called
categorical cross-entropy

Z p(x) log q(x (9)

» where x is the index of the class, p is the true distribution (one
hot vector) and g is the approximated distribution (softmax)

Lesson 08 29 /37

Learning - Objective function - Regression

>

Lesson 08

Regression is a form of approximation when we provide inputs
and outputs and are looking for parameters that minimize the
difference between generated outputs (predictions) and
provided outputs

Mean squared error:

~ 1 1D
L(Y,Y)= N Z (vi —¥i) (10)
Mean absolute error:
. 1 .
LY, V) = 5 2 =3 (11)
Hinge loss:
o1 .
L(Y,Y)= szax(l—y,-.y,,O) (12)

30/37

Learning - Stochastic Gradient Descent

Lesson 08

>

To find the optimal values of the parameters w of the network
(weights and biases), we need to use backpropagation

That is to compute the partial derivatives of the objective
functions against individual parameters

CNN has much less parameters than fully connected net —
faster convergence

The most widespread approach is to use stochastic gradient
descent

w* = argmin L(w) (13)
wttt :wt—e-<8L wt> (14)
ow D

where t is the iteration step, € is the learning rate, <(‘%

wt>
D:

is th average over the t-th batch D; with respect to w
evaluated at wy

31/37

Learning - Stochastic Gradient Descent

Lesson 08

The SGD uses mini-batches to optimize the parameters

» A mini-batch is an example of training data - not too small,

not too big

One run through a mini-batch is called an iteration, a run over
all mini-batches in training dataset is called epoch

It is very useful to use momentum in the computing of the
gradient

vt+1:a~vtﬁ-e.wte-<6L t> (15)
D

% w
where a is the momentum (0.9), 3 is the weight decay
(0.0005) and then

wH'l _ wt + Vf+1 (16)

32/37

» Overfitting is a common phenomena when training neural
networks

» Very good results on training data, very bad results on testing
data

~—— wain_loss
— wval_loss
—— train_acc
— val_acc

s
'

Overfitting

e

Loss/Accuracy
w

(¥}
'

DEPARTMENT OF Y
CYBERNETICS

Lesson 08 33/37

Reducing Overfitting - Data Augmentation

» It is the easiest way of fighting overfitting

» By applying label preserving transformations and thus
enlarging the dataset
» Different methods (can be combined):
1. Taking random (large) crops of the images (and resizing)
Horizontal reflection
. Altering the RGB values of pixels
. Small geometric transformations

IOV

Lesson 08 34 /37

Reducing Overfitting - Dropout

Lesson 08

This method tries to make the individual neurons independent
on each other

Mostly used with fully connected layers
We set a probability of dropout py

For each training batch we set output of a neuron to be zero
with probability py

Is often implemented as a layer

35/37

Examples - learned kernels

» These are the kernels of the first layer from AlexNet

» Trained no ImageNet 1000-classes, roughly 1.2 millions of
training images
DEPARTMENT '
OF
CYBERNETICS }
Lesson 08 36 /37

Examples - results

=]
e
e
i
beach wagon
fire engine

Squirrel monkey
orape spider monkey
elderberry titi

dead-man's-fingers

indri
currant howler monkey

Lesson 08

DEPARTMENT OF
CYBERNETICS

37/37

