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Convolution

» we will consider 2D convolution
» the result of convolution: for each point it tells us the area
under the multiplication of signal and kernel
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Architecture of Convolutional Neural Network

» There can be more variations of the architecture
» The standard architecture for image classification

» Convolution Layer — Max-pooling — Fully connected Layer
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Convolutional Layer
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A special layer inside a Neural Network

We define size and number of kernels (filters) to be learned,
the stride and padding

The layer uses the defined kernels to compute 'feature maps'’
over the input map as a convolution

This dramatically reduces the number of parameters in the
layer as opposed to fully connected layer

Usually the input is the image width x height x channels

The kernels operate through channels — kernel of defined size
3 x 3 really has size 3 x 3 x channels

This holds for all other convolutional layers — the number of
kernels in a layer defines the number of channels of its output
feature map
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Output of Convolutional Layer - example
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» The first convolutional layer has 32 kernels, thus the output
feature map has depth (number of channels) equal to 32

» If we define the size of kernels in the consecutive layer to be
5 x 5 the kernels will have (really) the size of 5 x 5 x 32

Lesson 08 4/37



Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride one:
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Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride one:

Lesson 08 6 /37



Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride one:
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Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride one, visited locations:
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Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride three:
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Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride three:
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Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride three:
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Output of Convolutional Layer - strides

» The stride defines by how many pixels we move the kernel
until we apply it next time
» Stride three, visited locations:
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Output of Convolutional Layer - strides
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The stride defines the size of the output feature map
In the previous example we had an image 10 x 10
With stride one, the output map will be of size 8 x 8
With stride three, the output map will be of size 3 x 3
The stride can be rectangular (eg. 3 x 1)

There are several strategies for choosing strides

Very often the strides are chosen so that consecutive kernels
overlap

13/37



Output of Convolutional Layer - padding

» Padding is important for managing the shape of the output
feature map

» It is a scalar parameter that determines the width of added
boundary pixels to the input map

» Current implementations support zero valued boundaries
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Output of Convolutional Layer - padding

» Example of padding equal to one, stride equal to three:
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Output of Convolutional Layer - padding

» Example of padding equal to one, stride equal to three:
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Output of Convolutional Layer - padding

» Example of padding equal to one, stride equal to three:
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Output of Convolutional Layer - padding

» Example of padding equal to one, stride equal to three:
> Visited locations
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Computing the convolution
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Let's consider M kernels K., c = 1,... M with size k x k

The size of the input map is W/ x H x C!

The depth of the output map C© is the number of kernels M
The width and height of the output map is determined by the
size of the kernels, the strides, and the padding

~ W!'+2-pad — k

we® stride 1 (2)
For each output location (x,y, ¢) and each kernel K., where
c=1,...,M we compute the convolution:
k=1k=1C'—1
Oby.cl=> > > Il —iys—j.n]-Keli.jn] (3)
i=0 j=0 n=0

where (xs, ys, n) is the proper location in the input map given
the stride and pool
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Activation function

» The output of the convolution is then 'activated’ using
activation function

Omaplx, y, c] = £ (Ox,y, c] + b) (4)

» b is the bias term

» The choice of the activation function is arbitrary, up to the
point of being differentiable (or at least have a defined
derivative) on the whole domain

» The mathematical purpose of the activation function is to
model the non-linearity

» But it is not necessary: f(x) = ax is a proper activation
function
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Activation function - sigmoidal

» A family of S shaped functions
» Commonly used in past to model the activity of a neuron cell
» Sigmoid:
1 ex
f(x) = = (5)
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Hyperbolic tangent:

eX —e™ X

f(X) = tanh(X) = m

v

There are more possibilities . . .
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Activation function - Rectified Linear Unit

» Most commonly used activation function in CNN
f(x) = max(x,0) (7)

10 Rectified Linear Unit (ReLU)

relu(x)

28 6 -7 =2 0 2 1 6

» non-linear, easy gradient
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Activation function - Rectified Linear Unit Modifications

» PRelLU - parametrized RelL U, where the slope of the negative
part is handled as a parameter to be learned via
backpropagation

» Maxout - several linear functions are being learned via
backpropagation and the activation is the max of these
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Activation function - Rectified Linear Impact on Training
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» Krizhevsky (2012) reports a much faster learning with RelLU

as opposed to tanh
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Pooling

» Pooling is used to compress the information propagated to the
next level of network
» In past average pooling was used
» More recently (2012) the max pooling was re-introduced and
experiments show its superiority
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» Overlapping pooling seems to be important
» Parameters: size of the pooling window, stride of the pooling
window
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Batch Normalization
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Any kind of normalization is important

Batch Normalization is widely used and is the leading form of
normalization in the means of performance

The statistics of the output map are computed

They are normalized so that they have zero mean and unit
variance — well-behaved input for the next layer

The normalization factors - scale and shift - are remembered
as a running average through the training phase

Further more the zero mean and unit variance statistics are
scaled and shifted via learned parameters v, 8

The main idea: decorrelation, any slice of the network has
similar inputs/outputs, faster training
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Classification layer - Softmax
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The best practice for classification is to use softmax
Softmax is a function
e
K
> k=1 €%

that takes the input vector and transforms it to be between
(0;1) and to sum up to one

(8)

o(z);

It is a generalization of logistic function

If j is the index of a class, then o(z); is the probability of the
input belonging to class ;

The targets are so called 'one hot vectors' - a vector with one
on the index j and zeros elsewhere
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Learning - Objective function - Classification

» To be able to learn the parameters of the network we need a
objective (criterion, loss) function to be optimized

» For the classification task with softmax layer we use so called
categorical cross-entropy

Z p(x) log q(x (9)

» where x is the index of the class, p is the true distribution (one
hot vector) and g is the approximated distribution (softmax)
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Learning - Objective function - Regression
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Regression is a form of approximation when we provide inputs
and outputs and are looking for parameters that minimize the
difference between generated outputs (predictions) and
provided outputs

Mean squared error:

~ 1 1D
L(Y,Y)= N Z (vi —¥i) (10)
Mean absolute error:
. 1 .
LY, V) = 5 2 =3 (11)
Hinge loss:
o1 .
L(Y,Y)= szax(l—y,-.y,,O) (12)
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Learning - Stochastic Gradient Descent
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To find the optimal values of the parameters w of the network
(weights and biases), we need to use backpropagation

That is to compute the partial derivatives of the objective
functions against individual parameters

CNN has much less parameters than fully connected net —
faster convergence

The most widespread approach is to use stochastic gradient
descent

w* = argmin L(w) (13)
wttt :wt—e-<8L wt> (14)
ow D

where t is the iteration step, € is the learning rate, <(‘%

wt>
D:

is th average over the t-th batch D; with respect to w
evaluated at wy
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Learning - Stochastic Gradient Descent
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The SGD uses mini-batches to optimize the parameters

» A mini-batch is an example of training data - not too small,

not too big

One run through a mini-batch is called an iteration, a run over
all mini-batches in training dataset is called epoch

It is very useful to use momentum in the computing of the
gradient

vt+1:a~vtﬁ-e.wte-<6L t> (15)
D

% w
where a is the momentum (0.9), 3 is the weight decay
(0.0005) and then

wH'l _ wt + Vf+1 (16)
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» Overfitting is a common phenomena when training neural
networks

» Very good results on training data, very bad results on testing
data
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Reducing Overfitting - Data Augmentation

» It is the easiest way of fighting overfitting

» By applying label preserving transformations and thus
enlarging the dataset
» Different methods (can be combined):
1. Taking random (large) crops of the images (and resizing)
Horizontal reflection
. Altering the RGB values of pixels
. Small geometric transformations

IOV
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Reducing Overfitting - Dropout

Lesson 08

This method tries to make the individual neurons independent
on each other

Mostly used with fully connected layers
We set a probability of dropout py

For each training batch we set output of a neuron to be zero
with probability py

Is often implemented as a layer
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Examples - learned kernels

» These are the kernels of the first layer from AlexNet

» Trained no ImageNet 1000-classes, roughly 1.2 millions of
training images
DEPARTMENT '
OF
CYBERNETICS }
Lesson 08 36 /37



Examples - results
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