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Principles of Classification

I classification vs. clustering - with/without teacher

I Feature vector

I is an n-dimensional vector describing attributes of the
classified object/event

I for the purpose of generality lets assume that a feature vector
x ∈ Rn

I the task of a binary classificator is to divide the Rn space into
two parts so that (ideally) all vectors from one class lie in one
part of the space and vice versa

I generally a hyperplane is used as a solution of this problem
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I ωi is the i th class, X ∈ Rn is the space of all classes

ω1,...,N ⊂ X ,⋃N
i=1 ωi = X ,

ωi ∩ ωj = ∅, pro i , j = 1, . . . ,N, i 6= j ,
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x
1
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Ada-Boost

I Ada-Boost (short for Adaptive Boosting) is an algorithm
creating a strong classifier as a combination of weak classifiers

I a weak classifier is such classifier that performs at better
than a random choice, i.e. the error ε < 0.5 for a binary
classification problem

I lets denote a weak classifier as h(x)→ {−1; 1}
I a strong classifier is a linear combination of weak classifiers,

lets denote it as H(x) = sign
∑T

t=1 αtht(x)
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Algorithm

I we have training data available
{(

x (i), y (i)
)}N

1
, y → {−1; 1}

I initialize weights corresponding to individual feature vectors as
ω0(i) = 1/N

I for t = 1, . . . ,T :

I compute ht = argminhj∈H εj =
∑N

i=1 ωi [yi 6= hj(xi )]

I if εt ≥ 0.5 then stop - the classifier failed to train

I set αt = 1
2 log

(
1−εt
εt

)
I update ωt+1(i) = ωt(i) exp(−αtyiht(xi ))/Zt

I iterate until εt = 0

I the final strong classifier H(x) = sign
∑T

t=1 αtht(x)
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Cascade Ada-Boost

I is a special framework for ada-boost
I the goal is to make the recognition faster but still efficient
I the decision is made sequentially - this allows to refuse some

features in very early stages
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Support Vector Machine

I in previous sections we have shown how to compute a decision
boundary

I in the case of linearly separable classes there exist a lot of
boundaries that will classify the training set with 100%
precision

I the question is: Is there (in some sense) an optimal decision
boundary?

I The criterion: The distance between the boundary and the
nearest training vector is maximized
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I we have a training set
{(

x (i), y (i)
)}N

1
, y → {−1; 1}

I we have to find the parameters of a decision boundary ω
(previously Θ)

ω>x > 0, pro ∀x ∈ ω1,

ω>x < 0, pro ∀x ∈ ω2.

I the decision boundary is then defined as:

g (x) = ω>x + ω0 = 0, (1)

ω1

ω2

g1 (x)

g2 (x)

g3 (x)

x
1

x 2
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I as said, SVM tries to find the optimal boundary based on the
distances from the training data

I with some normalization and math this can be achieved
relatively easily
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‖ ω ‖
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I we want to find such parameters ω that will satisfy:

ω>x + ω0 ≥ +1, pro ∀x ∈ ω1,

ω>x + ω0 ≤ −1, pro ∀x ∈ ω2.

I and we know that the distance between the hyperplanes
satisfying the equality in the equations above will be 2

‖ω‖
I we want this distance to be maximized

I this leads to the criterion J = min‖ω‖ which for the math
sake will be changed to J = min 1

2‖ω‖
2

I but with the condition of good classification

yi

(
ω>xi + ω0

)
≥ 1, i = 1, 2, . . . ,N. (2)

I the vectors xi that satisfy yi
(
ω>xi + ω0

)
= 1 are called

support vectors
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Optimization of the SVM criterion

I to optimize a criterion with conditions we make use of the
Lagrangian multiplicator

L (ω, ω0,λ) =
1

2
ω>ω −

N∑
i=1

λi

[
yi

(
ω>xi + ω0

)
− 1
]

(3)

I we need to find the minimum of L
I we use partial derivations

∂

∂ω
L (ω, ω0,λ) = 0 (4)

∂

∂ω0
L (ω, ω0,λ) = 0 (5)
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I to optimize a criterion with conditions we make use of the
Lagrangian multiplicator

L (ω, ω0,λ) =
1

2
ω>ω −

N∑
i=1

λi

[
yi

(
ω>xi + ω0

)
− 1
]

(6)

I this leads to the solution

ω =
N∑
i=1

λiyixi , (7)

0 =
N∑
i=1

λiyi . (8)
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Dual form

I we make use of the dual form of the problem

I we take the primal solution and substitute it to the primal
problem and find the maximum

min
ω,ω0

(
1

2
ω>ω −

N∑
i=1

λi

[
yi

(
ω>xi + ω0

)
− 1
])

(9)

I becomes

max
λ

 N∑
i=1

λi −
1

2

∑
i ,j

λiλjyiyjx
>
i xj

 (10)

I maximizing this equation yields the solution for λi which when
substituted to the equation ω =

∑N
i=1 λiyixi give us the

solution for ω
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Soft-margin

I when the classes are linearly non-separable

ω1

ω2

x
1

x 2
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I vectors that are correctly classified: yi
(
ω>xi + ω0

)
≥ 1

I vectors that are correctly classified but lie in the margin:
0 ≤ yi

(
ω>x + ω0

)
< 1

I vectors that are misclassified: yi
(
ω>x + ω0

)
< 0

I this can be written as:

yi

(
ω>x + ω0

)
≥ 1− ξi (11)

I the goal is to find the hyperplane that maximizes the margin
and minimizes the number of points for which ξ > 1

I this leads to a new formulation of the problem:

J (ω, ω0, ξ) =
1

2
‖ ω ‖2 +C

N∑
i=1

I (ξi ) , (12)

I (ξi ) =

{
1, ξi > 0,
0, ξi = 0.

(13)
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Kernel Trick

I in the solution of the SVM:

max
λ

 N∑
i=1

λi −
1

2

∑
i ,j

λiλjyiyjx
>
i xj

 (14)

I we can see the dot product of xi , xj
I this can be efficiently written with the kernel trick as

max
λ

 N∑
i=1

λi −
1

2

∑
i ,j

λiλjyiyjK (xi , xj)

 (15)

I this represents a transformation of the vectors into a higher
dimension

I in this higher dimension the vectors can be linearly separable

Lesson 07 27 / 46



Kernel Types

Type of kernel Formula Note

Polynomial K
(

xi , xj
)

=
(

xi xj + θ
)d Parameter d and threshold θ

is chosen by user.

Sigmoid kernel K
(

xi , xj
)

= tahh
(
ηxi xj + θ

)
Parameter η and threshold θ

is chosen by user.

Gauss kernel K
(

xi , xj
)

= exp
(
− 1

2σ2 ‖ xi − xj ‖2
)

Parameter σ is

Radial Basis Function is chosen by user.
(RBF)
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Decision Tree

I non-linear classification method, the model is based on
oriented graph → tree

I belongs to a family of models - Classification And Regression
Tree (CART)
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I method uses binary decision tree T consisting of nodes →
elements of feature vector x ∈ X are evaluated via a condition

I the tree then represents a gradual segmentation of the feature
space X into disjunct regions
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I each region represents one and only one class

I the feature space is divided into rectangular regions (the
region boundaries are parallel to axis of feature space)

I the inequations in nodes xi ≤ α is known as the decision rule
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Classification and Learning:

I classification proceeds by comparing an unknown vector in the
nodes of the tree

I the unknown vector then falls into one of the leafs which
represents a class

I usually the learning is supervised (learning with teacher)

I straightforward way of training → the regions are constructed
by comparing values in individual dimensions of the vector x
with a threshold, xi ≤ α, xi is the i th element of the feature
vector x and α is a threshold
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Rules of the construction of the decision tree:

I the first node (root) of the tree contains the whole training
set, Xs = X

I every next node s contains the subset Xs ⊂ X given by the
decision rule of the previous node

I the decision rule divides Xs into two subsets XsT (TRUE) and
XsF (FALSE)

I the division must fulfill:

XsT ∩ XsF = ∅,
XsT ∪ XsF = Xs .

I from all the possible divisions of Xs we pick just one, which is
optimal given a division criterion
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On choosing the decision rule

I the decision rule in the form xi ≤ αi , where αi is a threshold
αi ∈ R divides the feature vectors based on the comparison of
the i th dimension of the feature vector

I thanks to the train set X it is possible to enumerate a finite
set of values for computing αi

I for the i th dimension of feature space the values of all feature
vectors on this dimension are ordered ascending → we have a
finite set of values for computing the threshold

I in a given node we can enumerate all the possible values from
all the dimensions xi

I from this set of possible divisions (values of the threshold) we
need to choose such that will divide the given set of feature
vectors ”the best”→ we need a metric (eg. Gini impurity,
variance reduction, information gain, . . . )
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Information gain approach

I let P (ωi | s) be the probability of vectors in the set Xs

belonging to the class ωi

I the information gain is based around the entropy:

I (s) = −
M∑
i=1

P (ωi | s) log2 P (ωi | s) . (16)

I this equation represents the rate of entropy of the node s

I the probabilities P (ωi | s) are estimated by N i
s

Ns
, where N i

s is
the number of vectors in Xs belonging to class ωi and Ns is
the total number of vectors in the subset Xs
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I after dividing Xs into two subsets XsT a XsF , where XsT is
composed of NsT vectors and XsF is composed of NsF vectors,
the information gain (of this division) is:

∆I (s) = I (s)− NsA

Ns
I (sA)− NsN

Ns
I (sN) , (17)

where I (sA), I (sN) are the rates of entropy of nodes sA and
sN

I the goal of the training is to find for each node s such division
for which the information gain ∆I (s) is maximized
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Stopping criterion

I is used to stop the process of division and thus creating a leaf
node

I one option is to set the minimal number of training vectors in
the node

I another option is to set a minimal information gain that is
needed for the division
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Classification

I a leaf node s represents the class for which there are the most
training vectors in the leaf node

I each leaf node represents one class ωj , where j is

j = argmax
i

P (ωi | s) . (18)

Other options of constructing the tree:

I the decision rule can have the form of
∑l

i=1 cixi ≤ α
I we are not looking for thresholds but for parameters of a

hyperplane that divides the feature space into two subsets

I when considering two dimensional feature space and by
rearranging the expression we obtain: c1x + c2y − α ≤ 0

I which is a general form of equation of a half-plane

I can be more suitable in some cases, but the construction of
the tree is more complex
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Decision forest

I a disadvantage of the decision tree is the sensitivity to the
training set, so called bad generalization

I a small change in training set X results in change of topology
of the whole decision tree T

I this drawback is compensated by using more trees in the
training/testing phase

I principle: for one training set we construct several different
trees
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Training:

I the training set X is divided into several training sets X(t) by
utilizing the bootstrap aggregating algorithm

I each set contains N(t) unique feature vectors, with N(t) ≤ N,
but the cardinality of the set remains N (the elements may
repeat)

I for each set X(n) a decision tree is constructed

Classification:

I unknown vector y is inputed into all decision trees

I each decision tree outputs the class ωi for the unknown
vector y

I index i of the final class is chosen as the most frequent result,
alternatively we may compute the probability for each class as
P(ωi |y) = 1

T

∑T
t=1 Pt(ωi |y)
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Náhodný rozhodovaćı les (Random Decision Forest)

I the same principle as the decision forest → lowering the
sensitivity of classification on the training set

I . . . but also
I goal 1: lowering the correlation of the trees in the forest
I goal 2: make the training faster (especially for higher

dimensions)
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Real-time classification of depth data from MS Kinect into
individual parts of human body (Microsoft Research, 2011):
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Training

1. division of the training set X into T sets X(t) using
bootstrap aggregating (the same)

2. we choose a parameter m (m� l , where l is the
dimensionality of x ∈ X )

3. for one tree in a given node ← the decision rule is determined
based only on randomly chosen m dimensions

4. after the tree is trained, choose another m dimensions and
train another tree, and so on

Classification

I an unknown vector y is inputed into all the trees

I index i of the final class is chosen as the most frequent result,
alternatively we may compute the probability for each class as
P(ωi |y) = 1

T

∑T
t=1 Pt(ωi |y)
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Effect of the size of the forest:
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Effect of the depth of the trees:
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