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Západočeská univerzita v Plzni

Lesson 05



Statistical description of textures

LBP

HoG

Haar and Face Detection

Lesson 05 1 / 22



First order statistics

I use the histogram of the image - namely the relative histogram

P(I ) =
pixels with intensity I

total pixels in region
(1)

I image moments

mi = E [I i ] =

Ng−1∑
I=0

I iP(I ) (2)

I image central moments

µi = E [(I − E [I ])i =

Ng−1∑
I=0

(I −m1)iP(I ) (3)

I entropy

H = −E [log2P(I )] = −
Ng−1∑
I=0

P(I )log2P(I ) (4)
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Orig Norm -Skew +Skew Plat Lept

µ3 587 0 -169 169 0 0

µ4 16609 7365 7450 7450 9774 1007

H 4.61 4.89 4.81 4.81 4.96 4.12
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Second order statistics

I the second order statistics consider the structure of the data

I the images above have the same histogram, hence the same
first order statistics
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I adjacency matrix - for a given direction θ and distance d
tells me how many times are two intensities in relation

0◦ : P(I (m, n) = I1, I (m ± d , n) = I2) =

= number of pairs with intensities I1, I2
total number of possible pairs

(5)

I θ is discretized into {0, 45, 90, 135}
I simpler form of the adjacency matrix is independent on θ and

d

I in such case P(i , j) tells us how many times pixels with
intensity i are neighbors with pixels with intensity j (in the
terms of probability)
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I Angular Second Moment - the level of smoothness

ASM =

Ng−1∑
i=0

Ng−1∑
j=0

P(i , j)2 (6)

I Contrast - big values for large contrast

CON =

Ng−1∑
i=0

Ng−1∑
j=0

|i − j |2 log2 P(i , j) (7)

I Homogeneity - big values for small contrast

HOM =

Ng−1∑
i=0

Ng−1∑
j=0

P(i , j)

1 + |i − j |2
(8)

I Entropy - big values for small contrast

Hxy = −
Ng−1∑
i=0

Ng−1∑
j=0

P(i , j) log2 P(i , j) (9)
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Local Binary Patterns

I Ojala 1996: How to describe texture around a pixel with one
scalar?

I the basic version uses the 8-neighborhood of a pixel
I from this neighborhood a binary representation is build

I for a given image patch a histogram of LBP codes is
constructed and used as a feature
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Classification of LBP codes

I Classification with non-parametric test - the difference
between an unknown sample and a model is computed
(Kullback–Leibler divergence)

KL(S ,M) =
B∑

b=1

Sb log
Sb
Mb

(10)

I and since Sb is constant we can simplify to

L(S ,M) = −
B∑

b=1

Sb logMb (11)

I which is cross entropy
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Classification of LBP codes

I if low number of samples is available we can use equation:

χ2 =
B∑

b=1

Sb
(Sb −Mb)2

Sb + Mb
(12)

I or if we need computational efficiency

H(S ,M) =
B∑

b=1

min(Sb,Mb) (13)
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Extensions of LBP

I the basic LBP is invariant to brightness and contrast changes
I they are variant with scale and rotation - this is an issue
I texture definition:

T = t(gc , g0, . . . , gP−1) (14)

I the position of pixels in the neighborhood is defined as:

gp = (−R sin(2πp/P),R cos(2πp/P)) (15)

LBPP,R =
P−1∑
p=0

s(gp − gc)2p (16)
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Rotation invariance and uniformity

I is achieved by rotating the local neighborhood

LBP ri
P,R = min (ROR(LBPP,R , i)|i = 0, 1, . . . ,P − 1) (17)

I ROR is a bitwise rotation operator
I uniform patterns - are patterns with at most 2 changes

between 0 and 1
I there are a total of 58 uniform patterns, while the rest are put

into 59th bin
I Multi-resolution analysis - is used to cope with the resolution

(scale) of the image

LN =
N∑

n=1

L(Sn,Mn) (18)

I with different P and R for each n
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Histogram of Oriented Gradients

I method for describing images via histogram analysis
I the results of the method are directly dependent on the

gradient operator, many had been tested
I the best results were obtained for simple gradient

approximation
Ix = I ∗ [−1, 0, 1]
Iy = I ∗ [−1, 0, 1]T

(19)

I for every pixel the size and orientation of the gradient is
computed

I a histogram is constructed from these values
I the histogram is parametrized by interval i and number of

sectors s
I the interval i is mostly i =< 0, π >, i =< 0, 2π >
I the magnitude of the histogram is added to each bin and

moreover bilinearly distributed into neighboring bins
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i  = <0,2π>

s = 8

i  = <0,π>

s = 9
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Histogram Normalization

I the normalization is useful to cope with brightness
transformations

I the most used normalizations are

L1 − norm =
v

(‖v‖1 + e)
, (20)

L1 − sqrt =

√
v

(‖v‖1 + e)
, (21)

L2 − norm =
v√(

‖v‖2
2 + e2

) , (22)

I v is the histogram to be normalized and e is a small constant

I a special case of normalization L2 − Hys - the normalized
vector is clipped as in CLAHE
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I the values (after normalization) above a given threshold are
distributed into all the bins

I the process is repeated until no value is above the threshold
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HoG descriptor

I the image is divided into blocks of size (k, k)
I individual blocks are divided into cells of size (l , l)

buňka

posun

bloku

blok

I for each cell the normalized histograms of gradients are
computed

I for each block the cell histograms are averaged
I then the block shifts by some pixels and the process is

repeated
I the averaged block histograms are concatenated to obtain the

descriptor
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Haar-like features

I Haar-like features are used for image transformation similar to
cosine transform
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I the Haar-like filters can be computed efficiently by using
integral image

I the black regions are subtracted from the white regions
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Face detection

I a sliding window in different scales is used to compute
responses on different Haar filters

I a boosted classifier is used to train the right responses to
certain (most informative) filters
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