
Lesson 04
KAZE, Non-linear diffusion filtering, ORB, MSER

Ing. Marek Hrúz, Ph.D.

Katedra Kybernetiky
Fakulta aplikovaných věd

Západočeská univerzita v Plzni

Lesson 04

KAZE

ORB: an efficient alternative to SIFT and SURF

MSER - Maximally stable extremal regions

Lesson 04 1 / 24

KAZE - “wind” in Japanese

I Classical Gaussian scale spaces used in SIFT et.al. have
undesirable property of blurring the edges of images

I This lowers the localization precision of key-points

I KAZE introduces a new scheme for creating the scale-space
using the Nonlinear Diffusion Filtering

I The NDF has a nice property of preserving the image edges

I “NDF describes the evolution of the luminance of an image
through increasing scale levels as the divergence of a certain
flow function that controls the diffusion process.” (WTF?!?)

Lesson 04 2 / 24

Diffusion

I Diffusion is the net movement of molecules or atoms from a
region of high concentration (or high chemical potential) to a
region of low concentration (or low chemical potential).

I NDF is normally described by nonlinear partial differential
equations

∂L

∂t
= div (c (x , y , t) · ∇L) (1)

I L is the luminance function (the image)

I div is the divergence operator

I c(x , y , t) is a conductivity function

Lesson 04 3 / 24

Divergence

I In vector calculus, divergence is a vector operator that
produces a signed scalar field giving the quantity of a vector
field’s source at each point

Lesson 04 4 / 24

Divergence

I In vector calculus, divergence is a vector operator that
produces a signed scalar field giving the quantity of a vector
field’s source at each point

divF(p) = lim
V→{p}

∫∫
S(V)

F · n
|V |

dS (2)

Lesson 04 5 / 24

Divergence

divF(p) = lim
V→{p}

∫∫
S(V)

F · n
|V |

dS (3)

divF(p) = ∇·F =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (U,V ,W) =

∂U

∂x
+
∂V

∂y
+
∂W

∂z
(4)

Lesson 04 6 / 24

Perona and Malik Diffusion Eq.

I Nonlinear diffusion filtering was introduced in 1990

I ∂L
∂t = div (c (x , y , t) · ∇L)

I Perona and Malik proposed to make the conductivity function
c dependent on the gradient magnitude

I c(x , y , t) = g (∇Lσ(x , y , t))

I σ is the blurring parameter - variance of Gaussian

I More functions have been proposed, KAZE uses:

I g = exp
(
− |∇Lσ |

2

k2

)
I k is the contrast parameter – empirical or estimated

Lesson 04 7 / 24

Additive Operator Splitting

I No analytical solution for PDEs - we need a numerical
approciamtion = AOS

I Lets assume a 1-D case

∂u

∂t
= div

(
g

(∣∣∣∣∂uσ
∂x

∣∣∣∣) · ∂u

∂x

)
=
∂
(
g
(∣∣∂uσ

∂x

∣∣) · ∂u∂x)
∂x

(5)

I The simplest approximation is

uk+1
i − uk

i

τ
=
∑

j∈N(i)

gk
j + gk

i

2h2

(
uk
j − uk

i

)
(6)

I Where u is the image i , j are the locations, τ is the time
difference, h is the grid size, k is the time, N(i) is the
neighbourhood of location i

Lesson 04 8 / 24

Notation

I Gradient is approximated by central differences

gk
i = g

1

2

∑
p,q∈N(i)

(
uk
p − uk

q

2h

)2
 (7)

I The matrix notation: uk+1−uk
τ = A(uk)uk

I And matrix A has entries:

I This yields a set of linear equations which can be solved

Lesson 04 9 / 24

Scheme

I By arranging the expression we obtain

I uk+1 =
(
I + τA(uk)

)
uk

I This is the explicit scheme (restrictions on step size => slow)

I KAZE uses so-called semi-explicit scheme which is

I
uk+1
i −uki
τ = A(uk)uk+1

I
(
I − τA(uk)

)
uk+1 = uk which has no explicit solution

I We have to solve as:

uk+1 =
(
I − τA(uk)

)−1
uk (8)

I In the KAZE paper notation: Li+1 =
(
I − τ

∑m
l=1 Al(Li)

)−1
Li

I Thu sum in the expression reflects that there are more
direction in an image

Lesson 04 10 / 24

KAZE scale space, detector, descriptor

I Contrast parameter k: 70% percentile of the gradient
histogram of a smoothed version of the original image

I Scale σ: has octaves and sub-levels as SIFT

I σi (o, s) = σ02o+s/2

I Time step t: is a mapping from scale

I ti = 1
2σ

2
i

I Detector as in SIFT

I Descriptor as in SURF

Lesson 04 11 / 24

Comparison of scale-spaces

Lesson 04 12 / 24

Comparison of scale-spaces

Lesson 04 13 / 24

Example of filtered image

Lesson 04 14 / 24

ORB: an efficient alternative to SIFT and SURF

I SIFT and SURF - impose large computational burden (speed
and energy)

I ORB - Oriented FAST and Rotated BRIEF

I FAST - Features from Accelerated Segment Test - paper
“Machine learning for high-speed corner detection” in 2006,
revisited in 2010

I BRIEF - Binary Robust Independent Elementary Features -
paper “BRIEF: Binary Robust Independent Elementary
Features” in 2010

Lesson 04 15 / 24

FAST

I Algorithm for keypoint detection:
I Select a pixel p with intensity Ip
I Select appropriate threshold t
I Consider a circle of 16 pixels around the pixel under test

I A point p is an interest point (in this case a corner) if there are
n contiguous pixels brighter than Ip + t or darker than Ip − t

I High-speed test - check only 4 pixels (1, 9, 5, 13), if at least 3
are brighter/darker

Lesson 04 16 / 24

BRIEF

I It is a binary descriptor of interest points

I It selects pairs of pixels of a smoothed image around an
interest point and compares them binary

I If I (p) < I (q) then the result is 1, else it is 0

I The selection of the pixel pairs will be explained later (details
also in the paper)

I Based on the number of pixel pairs an n-dimensional binary
feature vector is obtained which serves as the descriptor of the
interest point

I Distance of the descriptors is calculated as a Hamming
distance (which is a XOR operator and bit count)

Lesson 04 17 / 24

Oriented FAST

I The location of keypoints is detected using FAST-9 algorithm
(circular radius of 9 px)

I Since FAST has large response on edges the oFAST computes
a Harris corner measure for each keypoint

I The keypoints are ordered according to this measure of
cornerness

I Furthermore a pyramid of the image is built and thus
multi-scale FAST keypoints are detected

I N best keypoints are considered (N is defined by the user)

Lesson 04 18 / 24

Oriented FAST - Orientation computation

I Orientation is computed as intensity centroid

mpq =
∑
x ,y

xpyqI (x , y) (9)

C =

(
m10

m00
,

m01

m00

)
(10)

I A vector from corner’s center O to the intensity centroid C is
computed

I the orientation is simply:

θ = atan2(m01,m10) (11)

I To obtain better results the C is computed only from pixels in
a circular region with radius r

Lesson 04 19 / 24

Classical BRIEF - details

I A test is defined over a smoothed image patch p of size S × S
as:

τ(p; x , y) =

{
1 : p(x) < p(y)
0 : p(x) ≥ p(y)

(12)

I Binary feature vector (descriptor) is constructed as

fn(p) =
∑

1≤i≤n
2i−1τ(p; xi , yi) (13)

I How to choose the pairs of pixel for the test τ?

I The pixels x and y are sampled independently from a
Gaussian distribution centered on the analyzed patch center
with a variance of 1

25 S2

I The smoothing is achieved using an integral image, where
each test point is a 5× 5 sub-window of a 31× 31 pixel patch

Lesson 04 20 / 24

Steered BRIEF

I Steered BRIEF respect the found orientation θ
I We define a matrix S to represent the binary tests

S =

(
x1, . . . , xn
y1, . . . , yn

)
(14)

I Using the patch orientation θ we construct a rotation
matrix Rθ

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
(15)

I New test locations are computed as

Sθ = RθS (16)

I In praxis the test locations are pre-generated
I Orientations are discretized into 12 degree regions
I The pre-generated test locations are pre-computed into the

360/12 = 30 different orientations and stored into a
look-up-table

Lesson 04 21 / 24

rBRIEF - rotation aware BRIEF

I Experiments show that Steered BRIEF generate descriptors
that are highly correlated (unwanted!)

I To recover from this an algorithm which yields rBRIEF is
presented:

I Enumerate all possible binary tests (in their case it’s 205590
tests)

I Take a lot of images, detect keypoints and run each test
against all training patches

I Order the tests by their distance from a mean of 0.5, forming
a vector T

I Greedy search:
I Put the first test into the result vector R and remove it from T
I Take the next test from T and compare it against all tests in

R. If its absolute correlation is greater than a threshold, discard
it; else add it to R

I Repeat the previous step until there are 256 tests in R. If there
are fewer than 256, raise the threshold and try again

Lesson 04 22 / 24

MSER - Maximally stable extremal regions

I Image I is a mapping I : D ⊂ Z2 → S. External region can be
defined if:

1. S is fully ordered
2. adjacency exists A ⊂ D×D

I Region Q is a connected subset from D - for every p, q ∈ Q
there exists a sequence p, a1, a2, . . . , an, q which fulfilsl
pAa1, a1Aa2, . . . , anAq

I (Outer) boundary of a region is defined
∂Q = {q ∈ D\Q : ∃p ∈ Q : qAp}

I Extremal region Q ⊂ D is a region which fulfills that for every
p ∈ Q, q ∈ ∂Q : I (p) > I (q) or I (p) < I (q)

I Maximally stable extremal region (MSER). Let
Q1, . . . ,Qi−1,Qi , . . . be a sequence of nested extremal regions
(ie. Qi ⊂ Qi+1). Extremal region Qi∗ is maximally stable if:

I q(i) = |Qi+∆\Qi−∆|
|Qi | has a local minimum in i∗ (|.| means

cardinality). ∆ ∈ S is the parameter of the method.

Lesson 04 23 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

Lesson 04 24 / 24

	KAZE
	ORB: an efficient alternative to SIFT and SURF
	MSER - Maximally stable extremal regions

