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Histogram Equalization

I computer vision method that adjusts the contrast of the image
I criterion is applied on the density of the brightness function
I ordering is maintained

T ∗ = argminT (|c1(T (k))− c0(k)|) (1)

I where c0 is the desired cumulative histogram

Obrázek: Histogram equalization
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Transformation of random variables

I is used to compute T ∗, utilizes cumulative density of the
histogram

I example: mapping a dice to {1, 2, 2, 2, 3, 3}
I pdice = 1/6 Fdice = {1/6, 1/3, 1/2, 2/3, 5/6, 1}
I pmap(x) = {1/6, 1/2, 1/3} Fmap = {1/6, 2/3, 1}
I a mapping between Fdice and Fmap

Obrázek: Random Variables transformation
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Transformation of random variables

I the transformation has to be monotonic, the ordering has to
be maintained

I the mapping Fmap 7→ Fdice is harder to achieve

I one brightness cannot be divided by the transform

I only translation (mind the ordering!) and merging is possible

I our dice problem results in mapping {1 7→ 1, 2 7→ 4, 3 7→ 6}
I we have made use of the whole contrast
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Examples

Obrázek: Input histogram and cumulative relative histogram.

Obrázek: Equalized histogram and cumulative relative equalized
histogram.
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Classic equalization fails

I because the image is handled as a whole, the damage can be
seen on the equalized image

Obrázek: Histogram equalization

I but it also influences the rest of the image
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Adaptive Histogram Equalization

I used for images with non-uniform lighting

I the equalization is computed piece-wise

Obrázek: Adaptive Histogram equalization

I problems on the edges of the image and salt & pepper noise

I the size of the window affects the result

Lesson 01



Contrast Limited Adaptive Histogram Equalization

I method that solves the standard equalization problems
I has a parameter of contrast limitation
I it says that no brightness can have a certain count (based on

the image size)
I if a brightness exceeds this level, the value is clipped and the

remainder is spread across the other brightnesses
I the method does not operate on the pixels directly, but

modifies the histogram first and then finds the transform

Obrázek: Contrast Limited Adaptive Histogram equalization
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CLAHE examples

Obrázek: Original image

Obrázek: After Contrast Limited Adaptive Histogram equalization
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Classic examples

Obrázek: After Histogram equalization

Obrázek: After Adaptive Histogram equalization
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Histogram Smoothing

I is used when finding a threshold automatically
I the threshold lies between peaks of a bimodal histogram
I due to the presence of noise we cannot find only ”true”peaks
I peak is a local maximum

Obrázek: Input image and its histogram.
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Conventional detection of local maxima

1. If h′(x) = 0, then x is an extreme.

2. If h′′(x) < 0, then x is an local maximum.

3. If h′′(x) > 0, then x is an local minimum.

I we usually do not have a function available

I we use approximations

h′(x) ≈ h(x)− h(x − 1) = 4h(x), (2)

h′′(x) ≈ h(x)− 2h(x − 1) + h(x − 2), (3)
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Peaks and noise

I ideal peak - {10, 20, 30, 100, 30, 20, 10}
I noisy (real) peak - {10, 20, 30, 20, 50, 10, 100, 80, 60}

Obrázek: Noisy peaks.
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Smoothing as a convolution

I convolution can be used for the purpose of smoothing

I the choice of the type and size of the convolution kernel will
affect the result

(f ∗g)(t) =

∫ ∞
−∞

f (τ)g(t−τ)dτ =

∫ ∞
−∞

f (t−τ)g(τ)dτ = (g∗f )(t)

(4)

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g [n −m] (5)
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Convolution with different kernels

Obrázek: Kernel is a constant

Obrázek: Kernel is a triangle
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Non-maximum suppression

I easy but powerful tool for the local maxima detection
I uses a local window, the center point is a local maximum if it

is the global maximum in the window

Obrázek: Non-maximum suppression
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Non-maximum suppression Example

Obrázek: Non-maximum suppression
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Otsu’s method

I used for image segmentation

I finds an optimal threshold - a bimodal histogram is desirable

I two classes - C0 ∈ {1, 2, 3, ..., k}, C1 ∈ {k + 1, ..., L}

pi =
ni
N
, pi ≥ 0,

L∑
i=1

pi = 1. (6)

ω0 = Pr(C0) =
k∑

i=1

pi = ω(k) (7)

ω1 = Pr(C1) =
L∑

i=k+1

pi = 1− ω(k) (8)

Lesson 01



I definitions of the means of the two classes

µ0 =
k∑

i=1

iPr(i |C0) =
k∑

i=1

i
pi
ω0

=
k∑

i=1

ipi
ω0

=
µ(k)

ω(k)
(9)

µ1 =
L∑

i=k+1

iPr(i |C1) =
L∑

i=k+1

i
pi
ω1

=
L∑

i=k+1

ipi
ω1

=
µT − µ(k)

1− ω(k)

(10)

I and the total mean (of the brightness)

µT = µ(L) =
L∑

i=1

ipi (11)
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I definitions of the variances of the two classes

σ20 =
k∑

i=1

(i − µ0)2Pr(i |C0) =
k∑

i=1

(i − µ0)2pi/ω0 (12)

σ21 =
L∑

i=k+1

(i − µ1)2Pr(i |C1) =
L∑

i=k+1

(i − µ1)2pi/ω1 (13)

I we can proof that the later holds

ω0µ0 + ω1µ1 = µT , ω0 + ω1 = 1. (14)
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I we have to find a criterion to optimize - criteria of
discriminative analysis

λ =
σ2B
σ2w

, κ =
σ2T
σ2w

, η =
σ2B
σ2T

, (15)

σ2w = ω0σ
2
0 + ω1σ

2
1 (16)

σ2B = ω0(µ0 − µT )2 + ω1(µ1 − µT )2 = ω0ω1(µ1 − µ0)2 (17)

σ2T =
L∑

i=1

(i − µT )2pi (18)

I the criteria are dependent (because σ2w + σ2B = σ2T ) , so we
can choose only one to optimize

Lesson 01



I we choose η because it’s the easiest to compute

I the optimal threshold k∗ is computed by maximizing η or
equally by maximizing σ2B

σ2B =
[µTω(k)− µ(k)]2

ω(k)[1− ω(k)]
. (19)

k∗ = argmax
1≤k<L

σ2B(k). (20)
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Gaussian Mixture Model

I is used to model probability density

I learned via EM

gmm =
N∑
i=1

αiNi (µi ;Ci ) (21)

Ni =
1√

(2π)D |Ci |
exp (−1

2
(x − µi )TC−1i (x − µi )) (22)
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